的任意..給出下列結論: 查看更多

 

題目列表(包括答案和解析)

給出下列四個結論:
(1) 設A、B是兩個非空集合,如果按對應法則f,使對于集合A中的任意一個元素x,在集合B中都有元素y與之對應,則稱對應f:A→B為從A到B的映射;
(2) 函數(shù)y=x+
2x
在區(qū)間[2,+∞)上單調遞增;
(3) 若a,b是異面直線,a?平面α,b?平面β,則α∥β;
(4) 兩條直線有斜率,如果它們的斜率相等,則它們平行.則其中所有正確結論的序號是
 

查看答案和解析>>

給出下列四個結論:
①若α、β為銳角,tan(α+β)=-3,tanβ=
1
2
,則α+2β=
4
;
②在△ABC中,若
AB
BC
>0
,則△ABC一定是鈍角三角形;
③已知雙曲線
x2
4
+
y2
m
=1
,其離心率e∈(1,2),則m的取值范圍是(-12,0);
④當a為任意實數(shù)時,直線(a-1)x-y+2a+1=0恒過定點P,則焦點在y軸上且過點P的拋物線的標準方程是x2=
4
3
y
.其中所有正確結論的個數(shù)是( 。

查看答案和解析>>

給出下列四個結論:

①若、為銳角,,,則;

②在△中,若,則△一定是鈍角三角形;

③已知雙曲線,其離心率,則m的取值范圍是(-12,0);

④當a為任意實數(shù)時,直線恒過定點,則焦點在y軸上且過點的拋物線的標準方程是.其中所有正確結論的個數(shù)是

A .1        B.2      C.3     D.4

 

查看答案和解析>>

給出下列四個結論:
(1) 設A、B是兩個非空集合,如果按對應法則f,使對于集合A中的任意一個元素x,在集合B中都有元素y與之對應,則稱對應f:A→B為從A到B的映射;
(2) 函數(shù)數(shù)學公式在區(qū)間[2,+∞)上單調遞增;
(3) 若a,b是異面直線,a?平面α,b?平面β,則α∥β;
(4) 兩條直線有斜率,如果它們的斜率相等,則它們平行.則其中所有正確結論的序號是 ________.

查看答案和解析>>

給出下列四個結論:

①若A、B、C、D是平面內四點,則必有+=+;

②“a>b>0”是“ab<”的充要條件;

③如果函數(shù)f(x)對任意的x∈R都滿足f(x)=-f(2+x),則函數(shù)f(x)是周期函數(shù);

④已知Sn是等差數(shù)列{an}(n∈N+)的前n項和,且S6>S7>S5,則S12>0.

其中正確結論的序號是___________.(填上所有正確結論的序號)

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分.

1. D   2. D  3. D   4. C   5. A

6. D提示: 用代換x得: ,

解得:,而單調遞增且大于等于0,,選D。

7. B   8. C  9. B

10.B提示:,若函數(shù)在上有大于零的極值點,即有正根。當有成立時,顯然有,此時,由得到參數(shù)的范圍為

11. D提示:由奇函數(shù)可知,而

,當時,;當時,,

上為增函數(shù),則奇函數(shù)上為增函數(shù),.

12. D

二、填空題:本大題共4個小題,每小題4分,共16分.

13.     14. 1-cos1    15.          16.②③

三、解答題:本大題共6小題,共74分.

17.(本小題滿分12分)

解(Ⅰ)由題意可設二次函數(shù)f(x)=a(x-1)(x-3)(a<0)           ………2分

當x=0時,y=-3,即有-3=a(-1)(-3),

解得a=-1,

f(x)= -(x-1)(x-3)=,                    

的解析式為=.             ……………………6分

(Ⅱ)y=f(sinx)=

             =.                       ……………………8分

             ,

              ,

則當sinx=0時,y有最小值-3;

當sinx=1時,y有最大值0.                          …………………12分

18.(本小題滿分12分)

解: (Ⅰ)改進工藝后,每件產品的銷售價為,月平均銷售量為件,則月平均利潤(元),

的函數(shù)關系式為  .…………6分                          

(Ⅱ)由,(舍),  ……………8分

,   

∴函數(shù) 取得最大值.

故改進工藝后,產品的銷售價為元時,旅游部門銷售該紀念品的月平均利潤最大.                                        ……………………12分

19.(本小題滿分12分)

解:(Ⅰ)設函數(shù)圖象上任意一點關于原點的對稱點為,則

                              ……………………4分

由題知點在函數(shù)的圖象上,

.   ……………………6分

(Ⅱ)由

時,,此時不等式無解

時,,解得

因此,原不等式的解集為                 …………………………12分

 

20.(本小題滿分12分)

解:設公司在甲電視臺和乙電視臺做廣告的時間分別為分鐘和分鐘,總收益為元,由題意得        ………………………………3分

目標函數(shù)為.………5分

二元一次不等式組等價于

作出二元一次不等式組所表示的平面區(qū)域,即可行域.                ………………8分

如圖:作直線,

平移直線,從圖中可知,當直線點時,目標函數(shù)取得最大值.   

聯(lián)立解得

的坐標為.                       ………………………10分

(元)

答:該公司在甲電視臺做100分鐘廣告,在乙電視臺做200分鐘廣告,公司的收益最大,最大收益是70萬元.                         …………………………12分

21.(本小題滿分12分)

解:由,

,所以

時,1<,即為真時實數(shù)的取值范圍是1<.      …………2分

,得,即為真時實數(shù)的取值范圍是. ……4分

為真,則真且真,

所以實數(shù)的取值范圍是.                       ……………………6分

(Ⅱ) 的充分不必要條件,即,且,   ……………8分

設A=,B=,則,

又A==, B==}, ……………10分

則0<,且

所以實數(shù)的取值范圍是.                      ……………………12分

22.(本小題滿分14分)

 解:(Ⅰ)因為,

      所以,

      因此 .                                ………………………………4分

(Ⅱ)由(Ⅰ)知,

     ,

     .                                   ………………5分

時,,                       ………………6分

時, .                                ………………7分

所以的單調增區(qū)間是,

的單調減區(qū)間是.                                 ………………8分

(Ⅲ)由(Ⅱ)知,內單調增加,在內單調減少,在上單調增加,且當時,,                         ………………9分

所以的極大值為,極小值為.  ……10分

因此,

    ,                    ………………12分

所以在的三個單調區(qū)間直線的圖象各有一個交點,當且僅當,

因此,的取值范圍為.               ………………14分

 


同步練習冊答案