查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)如圖,在直三棱柱ABCA1B1C1中,∠ACB = 90°. AC = BC = a,

    D、E分別為棱AB、BC的中點, M為棱AA1­上的點,二面角MDEA為30°.

   (1)求MA的長;w.w.w.k.s.5.u.c.o.m      

   (2)求點C到平面MDE的距離。

查看答案和解析>>

(本小題滿分12分)某校高2010級數(shù)學(xué)培優(yōu)學(xué)習(xí)小組有男生3人女生2人,這5人站成一排留影。

(1)求其中的甲乙兩人必須相鄰的站法有多少種? w.w.w.k.s.5.u.c.o.m      

(2)求其中的甲乙兩人不相鄰的站法有多少種?

(3)求甲不站最左端且乙不站最右端的站法有多少種 ?

查看答案和解析>>

(本小題滿分12分)

某廠有一面舊墻長14米,現(xiàn)在準(zhǔn)備利用這面舊墻建造平面圖形為矩形,面積為126平方米的廠房,工程條件是①建1米新墻費用為a元;②修1米舊墻的費用為元;③拆去1米舊墻,用所得材料建1米新墻的費用為元,經(jīng)過討論有兩種方案: (1)利用舊墻的一段x米(x<14)為矩形廠房一面的邊長;(2)矩形廠房利用舊墻的一面邊長x≥14.問如何利用舊墻,即x為多少米時,建墻費用最省?(1)、(2)兩種方案哪個更好?

 

查看答案和解析>>

(本小題滿分12分)

已知a,b是正常數(shù), ab, xy(0,+∞).

   (1)求證:,并指出等號成立的條件;w.w.w.k.s.5.u.c.o.m           

   (2)利用(1)的結(jié)論求函數(shù)的最小值,并指出取最小值時相應(yīng)的x 的值.

查看答案和解析>>

(本小題滿分12分)

已知a=(1,2), b=(-2,1),xab,y=-kab (kR).

   (1)若t=1,且xy,求k的值;

   (2)若tR x?y=5,求證k≥1.

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分.

1. D   2. D 3. D   4. C   5. A

6. D提示: 用代換x得:

解得:,而單調(diào)遞增且大于等于0,,選D。

7. B   8. C    9. B

10.B提示:,若函數(shù)在上有大于零的極值點,即有正根。當(dāng)有成立時,顯然有,此時,由得到參數(shù)的范圍為

11. D提示:由奇函數(shù)可知,而,

,當(dāng)時,;當(dāng)時,,

上為增函數(shù),則奇函數(shù)上為增函數(shù),.

12. D

二、填空題:本大題共4個小題,每小題4分,共16分.

13.            14.      15.          16.②③

三、解答題:本大題共6小題,共74分.

17.(本小題滿分12分)

解(Ⅰ)由題意可設(shè)二次函數(shù)f(x)=a(x-1)(x-3)(a<0)           ………2分

當(dāng)x=0時,y=-3,即有-3=a(-1)(-3),

解得a=-1,

f(x)= -(x-1)(x-3)=,                     

的解析式為=.             ……………………6分

(Ⅱ)y=f(sinx)=

             =.                       ……………………8分

             ,   ,

則當(dāng)sinx=0時,y有最小值-3;當(dāng)sinx=1時,y有最大值0.  …………………12分

18.(本小題滿分12分)

解: (Ⅰ)改進工藝后,每件產(chǎn)品的銷售價為,月平均銷售量為件,則月平均利潤(元),

的函數(shù)關(guān)系式為  .…………6分                         

(Ⅱ)由,(舍),  ……………8分

當(dāng);,   

∴函數(shù) 取得最大值.

故改進工藝后,產(chǎn)品的銷售價為元時,旅游部門銷售該紀(jì)念品的月平均利潤最大.                                        ……………………12分

19.(本小題滿分12分)

解: (Ⅰ)由題知=,所以= …3分

由題知對任意的不為零的實數(shù), 都有,

=恒成立,所以.         ………………………………6分

 (Ⅱ)由題知0,所以0,即,   ………………………8分

①當(dāng)時,

②當(dāng)時,,所以;

③當(dāng)時,,所以.  

綜上, 當(dāng)時,實數(shù)的取值范圍是;

當(dāng)時, 實數(shù)的取值范圍是;

當(dāng)時, 實數(shù)的取值范圍是.         …………………………12分

20.(本小題滿分12分)

解:設(shè)公司在甲電視臺和乙電視臺做廣告的時間分別為分鐘和分鐘,總收益為元,由題意得       ………3分

目標(biāo)函數(shù)為.       …………5分

二元一次不等式組等價于

作出二元一次不等式組所表示的平面區(qū)域,即可行域.                  ………………8分

如圖:作直線,

平移直線,從圖中可知,當(dāng)直線點時,目標(biāo)函數(shù)取得最大值.   

聯(lián)立解得

的坐標(biāo)為.                         …………………10分

(元)

答:該公司在甲電視臺做100分鐘廣告,在乙電視臺做200分鐘廣告,公司的收益最大,最大收益是70萬元.                         …………………………12分

21.(本小題滿分12分)

解:由,

,所以

當(dāng)時,1<,即為真時實數(shù)的取值范圍是1<.      …………2分

,得,即為真時實數(shù)的取值范圍是. ……4分

為真,則真且真,所以實數(shù)的取值范圍是.    …………6分

(Ⅱ) 的充分不必要條件,即,且,   ……………8分

設(shè)A=,B=,則,

又A==, B==}, ……………10分

則0<,且所以實數(shù)的取值范圍是.    ……………………12分

22.(本小題滿分14分)

解:(Ⅰ).   ………………………1分

當(dāng)時,

,解得,.         ………………………3分

當(dāng)變化時,,的變化情況如下表:

極小值

極大值

極小值

所以,內(nèi)是增函數(shù);在,內(nèi)是減函數(shù)!5分

(Ⅱ)解:,顯然不是方程的根.

為使僅在處有極值,必須恒成立,即有.                                  ……………………8分

解此不等式,得.這時,是唯一極值.

因此滿足條件的的取值范圍是.             ……………………10分

(Ⅲ)解:由條件可知,從而恒成立.

當(dāng)時,;當(dāng)時,

因此函數(shù)上的最大值是兩者中的較大者. ……12分

為使對任意的,不等式上恒成立,當(dāng)且僅當(dāng)

    即

所以,因此滿足條件的的取值范圍是.……………………14分

 

 

 


同步練習(xí)冊答案