題目列表(包括答案和解析)
設(shè)拋物線:(>0)的焦點(diǎn)為,準(zhǔn)線為,為上一點(diǎn),已知以為圓心,為半徑的圓交于,兩點(diǎn).
(Ⅰ)若,的面積為,求的值及圓的方程;
(Ⅱ)若,,三點(diǎn)在同一條直線上,直線與平行,且與只有一個(gè)公共點(diǎn),求坐標(biāo)原點(diǎn)到,距離的比值.
【命題意圖】本題主要考查圓的方程、拋物線的定義、直線與拋物線的位置關(guān)系、點(diǎn)到直線距離公式、線線平行等基礎(chǔ)知識(shí),考查數(shù)形結(jié)合思想和運(yùn)算求解能力.
【解析】設(shè)準(zhǔn)線于軸的焦點(diǎn)為E,圓F的半徑為,
則|FE|=,=,E是BD的中點(diǎn),
(Ⅰ) ∵,∴=,|BD|=,
設(shè)A(,),根據(jù)拋物線定義得,|FA|=,
∵的面積為,∴===,解得=2,
∴F(0,1), FA|=, ∴圓F的方程為:;
(Ⅱ) 解析1∵,,三點(diǎn)在同一條直線上, ∴是圓的直徑,,
由拋物線定義知,∴,∴的斜率為或-,
∴直線的方程為:,∴原點(diǎn)到直線的距離=,
設(shè)直線的方程為:,代入得,,
∵與只有一個(gè)公共點(diǎn), ∴=,∴,
∴直線的方程為:,∴原點(diǎn)到直線的距離=,
∴坐標(biāo)原點(diǎn)到,距離的比值為3.
解析2由對(duì)稱性設(shè),則
點(diǎn)關(guān)于點(diǎn)對(duì)稱得:
得:,直線
切點(diǎn)
直線
坐標(biāo)原點(diǎn)到距離的比值為
已知橢圓(a>b>0),點(diǎn)在橢圓上。
(I)求橢圓的離心率。
(II)設(shè)A為橢圓的右頂點(diǎn),O為坐標(biāo)原點(diǎn),若Q在橢圓上且滿足|AQ|=|AO|,求直線OQ的斜率的值。
【考點(diǎn)定位】本小題主要考查橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、直線的方程、平面內(nèi)兩點(diǎn)間距離公式等基礎(chǔ)知識(shí). 考查用代數(shù)方法研究圓錐曲線的性質(zhì),以及數(shù)形結(jié)合的數(shù)學(xué)思想方法.考查運(yùn)算求解能力、綜合分析和解決問(wèn)題的能力.
已知,函數(shù)(其中為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)求函數(shù)在區(qū)間上的最小值;
(Ⅱ)設(shè)數(shù)列的通項(xiàng),是前項(xiàng)和,證明:.
【解析】本試題主要考查導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用,求解函數(shù)給定區(qū)間的最值問(wèn)題,以及能結(jié)合數(shù)列的相關(guān)知識(shí),表示數(shù)列的前n項(xiàng)和,同時(shí)能構(gòu)造函數(shù)證明不等式的數(shù)學(xué)思想。是一道很有挑戰(zhàn)性的試題。
已知函數(shù)的圖象過(guò)坐標(biāo)原點(diǎn)O,且在點(diǎn)處的切線的斜率是.
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)求在區(qū)間上的最大值;
(Ⅲ)對(duì)任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?說(shuō)明理由.
【解析】第一問(wèn)當(dāng)時(shí),,則。
依題意得:,即 解得
第二問(wèn)當(dāng)時(shí),,令得,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值
第三問(wèn)假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。
不妨設(shè),則,顯然
∵是以O(shè)為直角頂點(diǎn)的直角三角形,∴
即 (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;
若方程(*)無(wú)解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.
(Ⅰ)當(dāng)時(shí),,則。
依題意得:,即 解得
(Ⅱ)由(Ⅰ)知,
①當(dāng)時(shí),,令得
當(dāng)變化時(shí),的變化情況如下表:
0 |
|||||
— |
0 |
+ |
0 |
— |
|
單調(diào)遞減 |
極小值 |
單調(diào)遞增 |
極大值 |
單調(diào)遞減 |
又,,。∴在上的最大值為2.
②當(dāng)時(shí), .當(dāng)時(shí), ,最大值為0;
當(dāng)時(shí), 在上單調(diào)遞增。∴在最大值為。
綜上,當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為2;
當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為。
(Ⅲ)假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。
不妨設(shè),則,顯然
∵是以O(shè)為直角頂點(diǎn)的直角三角形,∴
即 (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;
若方程(*)無(wú)解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.
若,則代入(*)式得:
即,而此方程無(wú)解,因此。此時(shí),
代入(*)式得: 即 (**)
令 ,則
∴在上單調(diào)遞增, ∵ ∴,∴的取值范圍是。
∴對(duì)于,方程(**)總有解,即方程(*)總有解。
因此,對(duì)任意給定的正實(shí)數(shù),曲線上存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上
(本小題滿分13分)
已知中心在坐標(biāo)原點(diǎn)O的橢圓C經(jīng)過(guò)點(diǎn)A(2,3),且點(diǎn)F(2,0)為其右焦點(diǎn)。
(1)求橢圓C的方程;
(2)是否存在平行于OA的直線,使得直線與橢圓C有公共點(diǎn),且直線OA與的距離等于4?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由。
【命題意圖】本小題主要考查直線、橢圓等基礎(chǔ)知識(shí),考查運(yùn)算求解能力、推理論證能力,考查函數(shù)與方程思想、數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想。
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com