[解答](Ⅰ)直角梯形ABCD的面積是M底面. 查看更多

 

題目列表(包括答案和解析)

在平面直角坐標系中,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系。已知直線l上兩點M,N的極坐標分別為(2,0)

【解析】

 

查看答案和解析>>

如圖,已知四棱錐的底面ABCD為正方形,平面ABCD,E、F分別是BC,PC的中點,

(1)求證:平面;

(2)求二面角的大。

【解析】第一問利用線面垂直的判定定理和建立空間直角坐標系得到法向量來表示二面角的。

第二問中,以A為原點,如圖所示建立直角坐標系

,,

設(shè)平面FAE法向量為,則

,,

 

查看答案和解析>>

三棱柱中,側(cè)棱與底面垂直,,,分別是的中點.

(Ⅰ)求證:平面;

(Ⅱ)求證:平面

(Ⅲ)求三棱錐的體積.

【解析】第一問利連結(jié),,∵M,N是AB,的中點∴MN//

又∵平面,∴MN//平面      ----------4分

⑵中年∵三棱柱ABC-A1B1C1中,側(cè)棱與底面垂直,∴四邊形是正方形.∴.∴.連結(jié),

,又N中的中點,∴

相交于點C,∴MN平面.      --------------9分

⑶中由⑵知MN是三棱錐M-的高.在直角中,,

∴MN=.又.得到結(jié)論。

⑴連結(jié),,∵M,N是AB,的中點∴MN//

又∵平面,∴MN//平面   --------4分

⑵∵三棱柱ABC-A1B1C1中,側(cè)棱與底面垂直,

∴四邊形是正方形.∴

.連結(jié),

,又N中的中點,∴

相交于點C,∴MN平面.      --------------9分

⑶由⑵知MN是三棱錐M-的高.在直角中,,

∴MN=.又

 

查看答案和解析>>

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)證明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)設(shè)E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.

 

【解析】解法一:如圖,以點A為原點建立空間直角坐標系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)證明:易得,于是,所以

(2) ,設(shè)平面PCD的法向量

,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

所以二面角A-PC-D的正弦值為.

(3)設(shè)點E的坐標為(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)證明:由,可得,又由,,故.又,所以.

(2)如圖,作于點H,連接DH.由,,可得.

因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值為.

(3)如圖,因為,故過點B作CD的平行線必與線段AD相交,設(shè)交點為F,連接BE,EF. 故或其補角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

【2012高考江蘇12】在平面直角坐標系中,圓的方程為,若直線上至少存在一點,使得以該點為圓心,1為半徑的圓與圓有公共點,則的最大值是   

查看答案和解析>>


同步練習(xí)冊答案