題目列表(包括答案和解析)
如圖,已知⊙中,直徑垂直于弦,垂足為,是延長(zhǎng)線上一點(diǎn),切⊙于點(diǎn),連接交于點(diǎn),證明:
【解析】本試題主要考查了直線與圓的位置關(guān)系的運(yùn)用。要證明角相等,一般運(yùn)用相似三角形來(lái)得到,或者借助于弦切角定理等等。根據(jù)為⊙的切線,∴為弦切角
連接 ∴…注意到是直徑且垂直弦,所以 且…利用,可以證明。
解:∵為⊙的切線,∴為弦切角
連接 ∴……………………4分
又∵ 是直徑且垂直弦 ∴ 且……………………8分
∴ ∴
如圖,四棱錐S—ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的三等分點(diǎn),SE=2EB
(Ⅰ)證明:平面EDC⊥平面SBC.(Ⅱ)求二面角A—DE—C的大小 .
【解析】本試題主要考查了立體幾何中的運(yùn)用。
(1)證明:因?yàn)镾D⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E為棱SB上的三等分點(diǎn),SE=2EB 所以ED⊥BS,DE⊥EC,所以ED⊥平面SBC.,因此可知得到平面EDC⊥平面SBC.
(Ⅱ)由SA2= SD2+AD2 = 5 ,AB=1,SE=2EB,AB⊥SA,知
AE2= (1 /3 SA)2+(2/ 3 AB)2 =1,又AD=1.
故△ADE為等腰三角形.
取ED中點(diǎn)F,連接AF,則AF⊥DE,AF2= AD2-DF2 =.
連接FG,則FG∥EC,F(xiàn)G⊥DE.
所以,∠AFG是二面角A-DE-C的平面角.
連接AG,AG= 2 ,F(xiàn)G2= DG2-DF2 =,
cos∠AFG=(AF2+FG2-AG2 )/2⋅AF⋅FG =-1 /2 ,
所以,二面角A-DE-C的大小為120°
數(shù)列,滿足
(1)求,并猜想通項(xiàng)公式。
(2)用數(shù)學(xué)歸納法證明(1)中的猜想。
【解析】本試題主要考查了數(shù)列的通項(xiàng)公式求解,并用數(shù)學(xué)歸納法加以證明。第一問(wèn)利用遞推關(guān)系式得到,,,,并猜想通項(xiàng)公式
第二問(wèn)中,用數(shù)學(xué)歸納法證明(1)中的猜想。
①對(duì)n=1,等式成立。
②假設(shè)n=k時(shí),成立,
那么當(dāng)n=k+1時(shí),
,所以當(dāng)n=k+1時(shí)結(jié)論成立可證。
數(shù)列,滿足
(1),,,并猜想通項(xiàng)公。 …4分
(2)用數(shù)學(xué)歸納法證明(1)中的猜想。①對(duì)n=1,等式成立。 …5分
②假設(shè)n=k時(shí),成立,
那么當(dāng)n=k+1時(shí),
, ……9分
所以
所以當(dāng)n=k+1時(shí)結(jié)論成立 ……11分
由①②知,猜想對(duì)一切自然數(shù)n均成立
已知函數(shù)f(x)(x∈R)滿足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的實(shí)數(shù)x只有一個(gè).
(1)求函數(shù)f(x)的表達(dá)式;
(2)若數(shù)列{an}滿足a1=,an+1=f(an),bn=-1,n∈N*,證明數(shù)列{bn}是等比數(shù)列,并求出{bn}的通項(xiàng)公式;
(3)在(2)的條件下,證明:a1b1+a2b2+…+anbn<1(n∈N*).
【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.
由f(x)=2x只有一解,即=2x,
也就是2ax2-2(1+b)x=0(a≠0)只有一解,
∴b=-1.∴a=-1.故f(x)=.…………………………………………4分
(2)an+1=f(an)=(n∈N*),bn=-1, ∴===,
∴{bn}為等比數(shù)列,q=.又∵a1=,∴b1=-1=,
bn=b1qn-1=n-1=n(n∈N*).……………………………9分
(3)證明:∵anbn=an=1-an=1-=,
∴a1b1+a2b2+…+anbn=++…+<++…+
==1-<1(n∈N*).
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com