1.(理)若復(fù)數(shù)z滿足.則z對應(yīng)的點(diǎn)位于 A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 查看更多

 

題目列表(包括答案和解析)

對于以下各命題:
(1)歸納推理特征是由部分到整體、特殊到一般;類比推理特征是由特殊到特殊;演繹推理特征是由一般到特殊.
(2)綜合法是一種順推法,由因?qū)Ч环治龇ㄊ且环N逆推法,執(zhí)果索因.
(3)若i為虛數(shù)單位,則3+4i>1+4i;
(4)若復(fù)數(shù)z滿足
.
z-1+2i 
  
.
=4,則它的對應(yīng)點(diǎn)Z的軌跡是以(1,-2)為圓心,半徑為4的圓.則其中所有正確的命題序號是______.

查看答案和解析>>

對于以下各命題:
(1)歸納推理特征是由部分到整體、特殊到一般;類比推理特征是由特殊到特殊;演繹推理特征是由一般到特殊.
(2)綜合法是一種順推法,由因?qū)Ч;分析法是一種逆推法,執(zhí)果索因.
(3)若i為虛數(shù)單位,則3+4i>1+4i;
(4)若復(fù)數(shù)z滿足=4,則它的對應(yīng)點(diǎn)Z的軌跡是以(1,-2)為圓心,半徑為4的圓.則其中所有正確的命題序號是   

查看答案和解析>>

對于以下各命題:
(1)歸納推理特征是由部分到整體、特殊到一般;類比推理特征是由特殊到特殊;演繹推理特征是由一般到特殊.
(2)綜合法是一種順推法,由因?qū)Ч环治龇ㄊ且环N逆推法,執(zhí)果索因.
(3)若i為虛數(shù)單位,則3+4i>1+4i;
(4)若復(fù)數(shù)z滿足
.
z-1+2i 
  
.
=4,則它的對應(yīng)點(diǎn)Z的軌跡是以(1,-2)為圓心,半徑為4的圓.則其中所有正確的命題序號是
(1)(2)(4)
(1)(2)(4)

查看答案和解析>>

一、選擇題(每題5分,共60分):

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

理D

文A

B

D

D

B

A

B

A

C

理D

文A

D

A

二、填空題(每題4分,共16分):

13.1   14.  15.;   16. 24。

三、解答題(本大題共6小題,共74分):

17解:sin3x=sin(2x+x)=sin2xcosx+cos2xsinx=2sinxcosx+(1-2sinx)sinx=3sinx-4sinx

∴f(x)=3-4sinx+2sin2x=3-2(1-cos2x)+2sin2x

         =1+2sin(2x+)(x≠kπ k∈Z) ……(6分)

(1)f(x)的周期T=………………(8分)

(2)當(dāng)sin(2x+)= -1 x= +kπ (k∈Z)時,f(x)=1-2…………(10分)

此時x的集合為{x|x= +kπ,k∈Z)………………(12分)

18、解:(1)P=1-……(4分)

(2)要使值為整數(shù)       當(dāng)a=1時,(a,b)=(1,1),(1,2),(1,4)

當(dāng)a=2時,(a,b)=(2,1),(2,4)    當(dāng)a=3時,(a,b)=(3,1),(3,6)

a=4,5,6時,(a,b)分別為(4,1)(5,1)(6,1)       共10種        ……(10分)

故所求概率為P== ……………………(12分)

19、(1)當(dāng)λ=時,面BEF⊥面ACD  …(2分)

證明如下:==   EF∥CD

       CD⊥面ABC ,又CD∥EF

  面BEF⊥面ACB           ……………  (6分)

(2)作EO⊥CF于O,連BO

   BE⊥面EFC

∴EO為BO在面EFC內(nèi)射影∴BO⊥CF

∴∠EOB為二面角E-CF-B的平面角…………(8分)

在RtΔEFC中EO?CF=EC?EF

    EO?= ?  EO=

在Rt△BOE中,BE=  EO=………………(10分)

∴ ∠EOB= =  ∴ ∠EOB=60°故二面角E-CF-B的大小為60°(12分)

20、解(1)f '(x)=+x (x>0)

若a≥0,則f ' (x)>0  f(x)在(0,+∞)遞增………(2分)

若a<0,令f ' (x)=0 x =±

f ' (x)=>0, 又x>0x∈(,+∞)

f ' (x)<0  x∈(0,

∴f(x)的遞增區(qū)間為(,+∞),遞減區(qū)間為(0,)……(6分)

(2)令φ(x)=f(x)-g(x)= lnx++ (x>0)

則φ ' (x)= +x==

令φ ' (x)=0 x=1………………………………(8分)

當(dāng)0<x<1時,φ ' (x)>0φ (x)遞增      當(dāng)x>1時,φ ' (x)<0    φ (x)遞減

∴x=1時φ (x)=-+=0……………………(10分)

∴φ (x)≤0 即f (x)≤g(x)     ∴a=1時的f(x)圖象不在g(x)圖象上方………(12分)

22.解:((1) 可設(shè), 得= tan

          ==

(2) 設(shè),     得直線的方程為

方程     = -

      所以      所以有

         所以

=(             

(3) 證明:當(dāng)時,   

左邊=           

=

   


同步練習(xí)冊答案