題目列表(包括答案和解析)
A.若成立,則當時,均有成立
B.若成立,則當時,均有成立
C.若成立,則當時,均有成立
D.若成立,則當時,均有成立
設是定義在正整數集上的函數,且滿足:“當 成立時,總可推出成立”。那么,下列命題總成立的是( 。
A.若成立,則成立
B.若成立,則成立
C.若成立,則當時,均有成立
D.若成立,則當時,均有成立
設是定義在正整數集上的函數,且滿足:“當成立時,總可推 出成立”.那么,下列命題總成立的是
A.若成立,則當時,均有成立
B.若成立,則當時,均有成立
C.若成立,則當時,均有成立
D.若成立,則當時,均有成立
設是定義在正整數集上的函數,且滿足:“當成立時,總可推出成立”. 那么,下列命題總成立的是( )
A.若成立,則成立;
B.若成立,則成立;
C.若成立,則當時,均有成立;
D.若成立,則當時,均有成立
設是定義在正整數集上的函數,且滿足:“當成立時,總可推出成立”. 那么,下列命題總成立的是( 。
A.若成立,則成立
B.若成立,則成立
C.若成立,則當時,均有成立
D.若成立,則當時,均有成立
一、選擇題(本大題共12小題,每小題4分,共48分)
1.B 2.A 3.B 4.A 5.D 6.C
7.C 8.A 9.B 10.D 11.D 12.B
二、填空題(本大題共4小題,每小題4分,共16分)
13. 14.增函數的定義 15.與該平面平行的兩個平面 16.
三、解答題(本大題共3小題,每小題12分,共36分)
17.(本小題滿分12分)
解:(Ⅰ)由,可得.
由題設可得 即
解得,.
所以.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分
(Ⅱ)由題意得,
所以.
令,得,.
所以函數的單調遞增區(qū)間為,.┄┄┄┄┄┄┄┄┄┄12分
解:(Ⅰ),
,
.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分
(Ⅱ)根據計算結果,可以歸納出 .
當時,,與已知相符,歸納出的公式成立.
假設當()時,公式成立,即,
那么,.
所以,當時公式也成立.
綜上,對于任何都成立. ┄┄┄┄┄┄┄┄┄┄┄┄12分
18B. (本小題滿分12分)
解:(Ⅰ),因為,
所以,
,解得,
同理.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分
(Ⅱ)根據計算結果,可以歸納出 .
當時,,與已知相符,歸納出的公式成立.
假設當()時,公式成立,即.
由可得,.
即 .
所以.
即當時公式也成立.
綜上,對于任何都成立. ┄┄┄┄┄┄┄┄┄┄┄12分
(Ⅰ)解:的定義域為,
的導數.
令,解得;令,解得.
從而在單調遞減,在單調遞增.
所以,當時,取得最小值. ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 6分
(Ⅱ)依題意,得在上恒成立,
即不等式對于恒成立.
令,
則.
當時,因為,
故是上的增函數, 所以 的最小值是,
從而的取值范圍是. ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12分
19B. (本小題滿分12分)
解:(Ⅰ)由于
當時,,
令,可得.
當時,,
可知.
所以函數的單調減區(qū)間為. ………………………………………………6分
(Ⅱ)設
當時,,
令,可得,即;
令,可得.
可得為函數的單調增區(qū)間,為函數的單調減區(qū)間.
當時,,
所以當時,.
可得為函數的單調減區(qū)間.
所以函數的單調增區(qū)間為,單調減區(qū)間為.
函數的最大值為,
要使不等式對一切恒成立,
即對一切恒成立,
又,
可得的取值范圍為. ………………………………………………12分
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com