D.若成立.則當時.均有成立 查看更多

 

題目列表(包括答案和解析)

對于函數(shù)f(x)(x∈D),若x∈D時,恒有成立,則稱函數(shù)是D上的J函數(shù).

(Ⅰ)當函數(shù)f(x)=mlnx是J函數(shù)時,求m的取值范圍;

(Ⅱ)若函數(shù)g(x)為(0,+∞)上的J函數(shù),

試比較g(a)與g(1)的大小;

求證:對于任意大于1的實數(shù)x1,x2,x3, ,xn,均有g(ln(x1+x2+ +xn))

>g(lnx1)+g(lnx2)+ +g(lnxn).

 

查看答案和解析>>

對于函數(shù)f(x)(x∈D),若x∈D時,恒有成立,則稱函數(shù)是D上的J函數(shù).

(Ⅰ)當函數(shù)f(x)=mlnx是J函數(shù)時,求m的取值范圍;

(Ⅱ)若函數(shù)g(x)為(0,+∞)上的J函數(shù),

①試比較g(a)與g(1)的大;

②求證:對于任意大于1的實數(shù)x1,x2,x3, ,xn,均有g(ln(x1+x2+ +xn))>g(lnx1)+g(lnx2)+ +g(lnxn).

 

查看答案和解析>>

對于函數(shù)f(x)(x∈D),若x∈D時,恒有成立,則稱函數(shù)是D上的J函數(shù).
(Ⅰ)當函數(shù)f(x)=mlnx是J函數(shù)時,求m的取值范圍;
(Ⅱ)若函數(shù)g(x)為(0,+∞)上的J函數(shù),
試比較g(a)與g(1)的大小;
求證:對于任意大于1的實數(shù)x1,x2,x3, ,xn,均有g(ln(x1+x2+ +xn))
>g(lnx1)+g(lnx2)+ +g(lnxn).

查看答案和解析>>

對于函數(shù)f(x)(x∈D),若x∈D時,恒有成立,則稱函數(shù)是D上的J函數(shù).
(Ⅰ)當函數(shù)f(x)=mlnx是J函數(shù)時,求m的取值范圍;
(Ⅱ)若函數(shù)g(x)為(0,+∞)上的J函數(shù),
試比較g(a)與g(1)的大小;
求證:對于任意大于1的實數(shù)x1,x2,x3, ,xn,均有g(ln(x1+x2+ +xn))
>g(lnx1)+g(lnx2)+ +g(lnxn).

查看答案和解析>>

是定義在正整數(shù)集上的函數(shù),且滿足:“當成立時,總可推出
成立”,那么,下列命題總成立的是
A.若成立,則成立
B.若成立,則當時,均有成立
C.若成立,則成立
D.若成立,則當時,均有成立

查看答案和解析>>

一、選擇題(本大題共12小題,每小題4分,共48分)

1.B    2.A    3.B    4.A     5.D     6.C

7.C    8.A    9.B    10.D    11.D   12.B   

二、填空題(本大題共4小題,每小題4分,共16分)

13.   14.增函數(shù)的定義     15.與該平面平行的兩個平面    16.

三、解答題(本大題共3小題,每小題12分,共36分)

17.(本小題滿分12分)

解:(Ⅰ)由,可得

由題設可得     即

解得,

所以.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分

(Ⅱ)由題意得,

所以

,得,

 

 

所以函數(shù)的單調(diào)遞增區(qū)間為,.┄┄┄┄┄┄┄┄┄┄12分

18A. (本小題滿分12分)

解:(Ⅰ),

,

.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分

(Ⅱ)根據(jù)計算結(jié)果,可以歸納出 .

時,,與已知相符,歸納出的公式成立.

假設當)時,公式成立,即

那么,

所以,當時公式也成立.

綜上,對于任何都成立. ┄┄┄┄┄┄┄┄┄┄┄┄12分

18B. (本小題滿分12分)

解:(Ⅰ),因為,

所以

,解得

同理.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分

(Ⅱ)根據(jù)計算結(jié)果,可以歸納出 .

時,,與已知相符,歸納出的公式成立.

假設當)時,公式成立,即.

可得,.

.

所以.

即當時公式也成立.

綜上,對于任何都成立. ┄┄┄┄┄┄┄┄┄┄┄12分

19A. (本小題滿分12分)

(Ⅰ)解:的定義域為

的導數(shù).

,解得;令,解得.

從而單調(diào)遞減,在單調(diào)遞增.

所以,當時,取得最小值. ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 6分

(Ⅱ)依題意,得上恒成立,

即不等式對于恒成立.

,

.

時,因為,

上的增函數(shù),   所以 的最小值是,

從而的取值范圍是. ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12分

19B. (本小題滿分12分)

解:(Ⅰ)由于

時,

,可得.

時,

可知

所以函數(shù)的單調(diào)減區(qū)間為. ………………………………………………6分

(Ⅱ)設

時,,

,可得,即;

,可得.

可得為函數(shù)的單調(diào)增區(qū)間,為函數(shù)的單調(diào)減區(qū)間.

時,,

所以當時,

可得為函數(shù)的單調(diào)減區(qū)間.

所以函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.

函數(shù)的最大值為,

    要使不等式對一切恒成立,

對一切恒成立,

,

可得的取值范圍為. ………………………………………………12分

 


同步練習冊答案