題目列表(包括答案和解析)
(本題滿分14分)已知二次函數(shù):
(1)若函數(shù)在區(qū)間上存在零點(diǎn),求實(shí)數(shù)的取值范圍;
(2)問:是否存在常數(shù),當(dāng)時(shí),的值域?yàn)閰^(qū)間,且
的長度為。
(本題滿分14分)已知數(shù)列中,,且
.(Ⅰ) 求數(shù)列的通項(xiàng)公式;(Ⅱ) 令,數(shù)列的前項(xiàng)和為,試比較與的大; (Ⅲ) 令,數(shù)列的前項(xiàng)和為,求證:對任意,都有 .
(本題滿分14分)
已知數(shù)列中,,且.
(Ⅰ) 求數(shù)列的通項(xiàng)公式;
(Ⅱ) 令,數(shù)列的前項(xiàng)和為,試比較與的大。
(Ⅲ) 令,數(shù)列的前項(xiàng)和為.求證:對任意,
都有 .
(本題滿分14分)
已知正項(xiàng)數(shù)列滿足:對任意正整數(shù),都有成等差數(shù)列,成等比數(shù)列,且
(Ⅰ)求證:數(shù)列是等差數(shù)列;
(Ⅱ)求數(shù)列的通項(xiàng)公式;
(Ⅲ) 設(shè)如果對任意正整數(shù),不等式恒成立,求實(shí)數(shù)的取值范圍.
(本題滿分14分)
已知點(diǎn)及圓:.
(Ⅰ)若直線過點(diǎn)且與圓心的距離為1,求直線的方程;
(Ⅱ)設(shè)過直線與圓交于、兩點(diǎn),當(dāng)時(shí),求以為直徑的圓的方程;
(Ⅲ)設(shè)直線與圓交于,兩點(diǎn),是否存在實(shí)數(shù),使得過點(diǎn)的直線 垂直平分弦?若存在,求出實(shí)數(shù)的值;若不存在,請說明理由.
一、選擇題
1-5 D D B B D 6-10 D D C A B
二、填空題
11、 12、13、
14、=___5___;當(dāng)n>4時(shí),= 15。12種
三、解答題
16、(1)由條件--------- (6′)
(2)z1+z2=(m2+3)+(m2-1)i--------- (8′) |z1+z2|=-----(10′)
=,|z1+z2|min=--------- (12′)
17、解:由 得,所以 ----------4分
故面積S= ---------------------7分
= ------------------10分
18、解: ----------------------3分
---------------- 7分
令,得:---------------10分
所以展開式中的常數(shù)項(xiàng)為:。----------------------11分
19、解:(Ⅰ)由的圖象經(jīng)過P(0,2),知d=2,所以
----------------------2分
由在處的切線方程是,知
---------------------6分
故所求的解析式是 ----------------------7分
(Ⅱ)
解得 當(dāng)
當(dāng)
故內(nèi)是增函數(shù),在內(nèi)是減函數(shù),
在內(nèi)是增函數(shù). ----------------------14分
20、解:(1)3個(gè)旅游團(tuán)選擇3條不同線路的概率為:P1= -----------------3分
(2)恰有兩條線路沒有被選擇的概率為:P2= --------------6分
(3)設(shè)選擇甲線路旅游團(tuán)數(shù)為ξ,則ξ=0,1,2,3 -----------------7分
P(ξ=0)= P(ξ=1)=
P(ξ=2)= P(ξ=3)= ------------------11分
∴ξ的分布列為:
ξ
0
1
2
3
----------------------12分
∴期望Eξ=0×+1×+2×+3×= ---------------------14分
21、(1)當(dāng)時(shí), 原等式變?yōu)?/p>
---2分
令得 ---------------------5分
(2)因?yàn)?sub> 所以
----------------------7分
①當(dāng)時(shí)。左邊=,右邊
左邊=右邊,等式成立。---------------------8分
②假設(shè)當(dāng)時(shí),等式成立,即 -------9分
那么,當(dāng)時(shí),
左邊
右邊。-------------1`2分
故當(dāng)時(shí),等式成立。
綜上①②,當(dāng)時(shí), -------------------14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com