C. D. 查看更多

 

題目列表(包括答案和解析)

C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時(shí),求直線與圓O公共點(diǎn)的一個(gè)極坐標(biāo).
D.選修4-5:不等式證明選講
對(duì)于任意實(shí)數(shù),不等式恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時(shí),求直線與圓O公共點(diǎn)的一個(gè)極坐標(biāo).
D.選修4-5:不等式證明選講
對(duì)于任意實(shí)數(shù),不等式恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

C

[解析] 由基本不等式,得abab,所以ab,故B錯(cuò);≥4,故A錯(cuò);由基本不等式得,即,故C正確;a2b2=(ab)2-2ab=1-2ab≥1-2×,故D錯(cuò).故選C.

查看答案和解析>>

定義域?yàn)?/span>R的函數(shù)滿足,且當(dāng)時(shí),,則當(dāng)時(shí),的最小值為( )

A B C D

 

查看答案和解析>>

.過點(diǎn)作圓的弦,其中弦長(zhǎng)為整數(shù)的共有  (  )    

A.16條          B. 17條        C. 32條            D. 34條

 

查看答案和解析>>

 

一、選擇題:本題考查基本知識(shí)和基本運(yùn)算,每小題5分,共60分.

20080528

二、填空題:本題考查基本知識(shí)和基本運(yùn)算,每小題4分,共16分.

13.  14.  15.  16.

三、解答題:本大題共6小題,共74分.

17.解:……4分

   (1)由題知…………………………………………………6分

   (2)由(1)的條件下

      

       由,……………………………………………8分

       得的圖象的對(duì)稱軸是

       則,

       ……………………………………………………10分

       又…………………………………………………12分

18.解:(1)ξ的取值為0、1、2、3、4.

      

       ξ的分布列為

       ξ

0

1

2

3

4

P

       ∴Eξ=+×2+×3+×4=…………………………………………7分

   (2)

       …………………………………9分

       ………………………11分

       的最大值為2.……………………………………………………12分

19.解:由三視圖可知三棱柱A1B1C1ABC為直三棱柱,側(cè)梭長(zhǎng)為2,底面是等腰直角三角

形,AC=BC=1.…………2分

    1. <span id="ha5x3"></span><span id="ha5x3"><del id="ha5x3"><p id="ha5x3"></p></del></span>

             則C(0,0,0),C1(0,0,2),

             A(1,0,0),B1(0,1,2),A1(1,0,2)

             MA1B1中點(diǎn),

             …………………………4分

         (1)

             ……………………6分

             ∥面AC1M,又∵B1CAC1M,

             ∴B1C∥面AC1M.…………………………8分

         (2)設(shè)平面AC1M的一個(gè)法向量為

            

            

             …………………………………………………………10分

            

             則…………………………12分

      20.解:(1)………………2分

             的等差中項(xiàng),

            

             解得q=2或(舍去),………………………………………………4分

             ………………5分

         (2)由(1)得,

             當(dāng)n=1時(shí),A1=2,B1=(1+1)2=4,A1<B1;

             當(dāng)n=2時(shí),A2=6,B2=(2+1)2=9,A2<B2

             當(dāng)n=3時(shí),A3=14,B3=(3+1)2=16,A3<B3;

             當(dāng)n=4時(shí),A4=30,B4=(4+1)2=25,A4>B4;

             由上可猜想,當(dāng)1≤n≤3時(shí),An<Bn;當(dāng)n≥4時(shí),An>Bn.……………………8分

             下面用數(shù)學(xué)歸納法給出證明:

             ①當(dāng)n=4時(shí),已驗(yàn)證不等式成立.

             ②假設(shè)n=kk≥4)時(shí),Ak>Bk.成立,即,

            

             即當(dāng)n=k+1時(shí)不等式也成立,

             由①②知,當(dāng)

             綜上,當(dāng)時(shí),An<Bn;當(dāng)

       

       

      21.解:(1)設(shè).

             由題意得……………………2分

             ∵m>1,∴軌跡C是中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上的橢圓(除去x軸上的兩項(xiàng)點(diǎn)),其

      中長(zhǎng)軸長(zhǎng)為2,短軸長(zhǎng)為2.………………………………………………4分

         (2)當(dāng)m=時(shí),曲線C的方程為

             由………………6分

             令

             此時(shí)直線l與曲線C有且只有一個(gè)公共點(diǎn).………………………………8分

         (3)直線l方程為2x-y+3=0.

             設(shè)點(diǎn)表示P到點(diǎn)(1,0)的距離,d2表示P到直線x=2的距離,

             則

             …………………………10分

             令

             則

             令……………………………………………………12分

            

            

             ∴的最小值等于橢圓的離心率.……………………………………14分

      22.(1)由已知

             ,

            

             …………………………………………………………2分

             又當(dāng)a=8時(shí),

            

             上單調(diào)遞減.……………………………………………………4分

         (2)

            

             ……………………6分

            

            

            

            

            

      ………………………………………………8分

         (3)設(shè)

             且

             由(1)知

            

             ∴△ABC為鈍角三角形,且∠B為鈍角.…………………………………………11分

             若△ABC為等腰三角形,則|AB|=|BC|,

            

            

             此與(2)矛盾,

             ∴△ABC不可能為等腰三角形.………………………………………………14分

       

       


      同步練習(xí)冊(cè)答案