∴ ∴不成立 ∴的曲線上不存在兩點.使得過這兩點的切線互相垂直. 查看更多

 

題目列表(包括答案和解析)

已知雙曲線C:
x2
4
-y2=1
和定點P(2,
1
2
)

(1)求過點P且與雙曲線C只有一個公共點的直線方程;
(2)雙曲線C上是否存在A,B兩點,使得
OP
=
1
2
(
OA
+
OB
)
成立?若存在,求出直線AB的方程;若不存在,說明理由.

查看答案和解析>>

已知雙曲線C1的漸近線方程是y=±
3
3
x,且它的一條準線與漸近線y=
3
3
x及x軸圍成的三角形的周長是
3
2
(1+
3
)
.以C1的兩個頂點為焦點,以C1的焦點為頂點的橢圓記為C2
(1)求C2的方程;
(2)已知斜率為
1
2
的直線l經(jīng)過定點P(m,0)(m>0)并與橢圓C2交于不同的兩點A、B,若對于橢圓C2上任意一點M,都存在θ∈[0,2π],使得
OM
=cosθ•
OA
+sinθ•
OB
成立.求實數(shù)m的值.

查看答案和解析>>

已知雙曲線C1的漸近線方程是y=±
3
3
x,且它的一條準線與漸近線y=
3
3
x及x軸圍成的三角形的周長是
3
2
(1+
3
)
.以C1的兩個頂點為焦點,以C1的焦點為頂點的橢圓記為C2
(1)求C2的方程;
(2)已知斜率為
1
2
的直線l經(jīng)過定點P(m,0)(m>0)并與橢圓C2交于不同的兩點A、B,若對于橢圓C2上任意一點M,都存在θ∈[0,2π],使得
OM
=cosθ•
OA
+sinθ•
OB
成立.求實數(shù)m的值.

查看答案和解析>>

已知雙曲線C:
x2
4
-y2=1
和定點P(2,
1
2
)

(1)求過點P且與雙曲線C只有一個公共點的直線方程;
(2)雙曲線C上是否存在A,B兩點,使得
OP
=
1
2
(
OA
+
OB
)
成立?若存在,求出直線AB的方程;若不存在,說明理由.

查看答案和解析>>


(本小題滿分14分)
已知函數(shù),當時,取得極小值.
(1)求,的值;
(2)設直線,曲線.若直線與曲線同時滿足下列兩個條件:
①直線與曲線相切且至少有兩個切點;
②對任意都有.則稱直線為曲線的“上夾線”.
試證明:直線是曲線的“上夾線”.
(3)記,設是方程的實數(shù)根,若對于定義域中任意的,當,且時,問是否存在一個最小的正整數(shù),使得恒成立,若存在請求出的值;若不存在請說明理由.

查看答案和解析>>


同步練習冊答案