題目列表(包括答案和解析)
(本題滿分13分)
已知數(shù)列滿足,
(1)計(jì)算的值;
(2)由(1)的結(jié)果猜想的通項(xiàng)公式,并證明你的結(jié)論。
(本題滿分13分)
如圖在棱長(zhǎng)為2的正方體中,點(diǎn)F為棱CD中點(diǎn),點(diǎn)E在棱BC上
(1)確定點(diǎn)E位置使面;
(2)當(dāng)面時(shí),求二面角的平面角的余弦值;
(本題滿分13分)
一個(gè)口袋里有4個(gè)不同的紅球,6個(gè)不同的白球(球的大小均一樣)
(1)從中任取3個(gè)球,恰好為同色球的不同取法有多少種?
(2)取得一個(gè)紅球記為2分,一個(gè)白球記為1分。從口袋中取出五個(gè)球,使總分不小于7分的不同取法共有多少種?(本題滿分13分)已知定義域?yàn)閇0,1]的函數(shù)同時(shí)滿足: ①對(duì)于任意的,總有; ②=1; ③當(dāng)時(shí)有.
(1)求的值;w.w.w.k.s.5.u.c.o.m
(2)求的最大值;
(3)當(dāng)對(duì)于任意,總有成立,求實(shí)數(shù)的取值范圍.
(本題滿分13分)
已知橢圓的左、右焦點(diǎn)分別為、,過(guò)的直線交橢圓于、兩點(diǎn),過(guò)的直線交橢圓于、兩點(diǎn),且,垂足為.
(1)設(shè)點(diǎn)的坐標(biāo)為,求的最值;
(2)求四邊形的面積的最小值.
一、選擇題(本大題共12小題,每小題5分,共60分)
1~5 D A B D C 6~
二、填空題(本大題共4小題,每小題4分,共16分)
13.; 14.21 ; 15. ; 16..
三、解答題(本大題共6小題,共74分)
17.(本題滿分13分)
解:(1)甲、乙兩衛(wèi)星各自預(yù)報(bào)一次,記“甲預(yù)報(bào)準(zhǔn)確”為事件A,“乙預(yù)報(bào)準(zhǔn)確”為事件B.則兩衛(wèi)星只有一顆衛(wèi)星預(yù)報(bào)準(zhǔn)確的概率為:
… 4分
= 0.8×(1 - 0.75) + (1 - 08)×0.75 = 0.35 …………6分
答:甲、乙兩衛(wèi)星中只有一顆衛(wèi)星預(yù)報(bào)準(zhǔn)確的概率為0.35 ………7分
(2) 甲獨(dú)立預(yù)報(bào)3次,至少有2次預(yù)報(bào)準(zhǔn)確的概率為
…………10分
==0.896 ………………………12分
答:甲獨(dú)立預(yù)報(bào)3次,至少有2次預(yù)報(bào)準(zhǔn)確的概率為0.896. ……… 13分
18.(本題滿分13分)
解:(1)∵ …………………2分
= = ……………6分
∴函數(shù)的最小正周期 …………………7分
又由可得:
的單調(diào)遞增區(qū)間形如: ……9分
(2) ∵時(shí), ,
∴的取值范圍是 ………………11分
∴函數(shù)的最大值是3,最小值是0
從而函數(shù)的是 …………13分
19.(本題滿分12分)
解:(1) ∵ ∴由已知條件可得:,并且,
解之得:, ……………3分
從而其首項(xiàng)和公比滿足: ………5分
故數(shù)列的通項(xiàng)公式為: ……6分
(2) ∵
數(shù)列是等差數(shù)列, …………………………8分
∴
=
== …………………10分
由于,當(dāng)且僅當(dāng)最大時(shí),最大.
所以當(dāng)最大時(shí),或6 …………………………12分
20.(本題滿分12分)
解:(1) ∵為奇函數(shù) ∴ ………2分
∵,導(dǎo)函數(shù)的最小值為-12 ∴……3分
又∵直線的斜率為,
并且的圖象在點(diǎn)P處的切線與它垂直
∴,即 ∴ ……………6分
(2) 由第(1)小題結(jié)果可得:
……………9分
令,得 ……………10分
∵,,
∴在[-1, 3]的最大值為11,最小值為-16. ………12分
21.(本題滿分12分)
解:(1) ∵函數(shù)有意義的充要條件為
,即是
∴函數(shù)的定義域?yàn)?sub> …………3分
∵函數(shù)有意義的充要條件為:
∴函數(shù)的定義域?yàn)?sub> …………5分
(2)∵由題目條件知
∴, …………………7分
∴c的取值范圍是:[-5, 5] …………………8分
(3) 即是
∵是奇函數(shù),∴ ………………9分
又∵函數(shù)的定義域?yàn)?sub>,并且是增函數(shù)
∴ ………………11分
解之得的取值范圍是:= …………12分
22.(本題滿分12分)
解:(1) 設(shè)雙曲線的漸近線方程為,即,
∵雙曲線的漸近線與已知的圓相切,圓心到漸近線的距離等于半徑
∴
∴雙曲線的漸近線的方程為: ……………2分
又設(shè)雙曲線的方程為:,則
∵雙曲線的漸近線的方程為,且有一個(gè)焦點(diǎn)為
∴, ………………4分
解之得:,故雙曲線的方程是: ……………5分
(2) 聯(lián)立方程組,消去得:(*)…………6分
∵直線與雙曲線C的左支交于兩點(diǎn),方程(*)兩根、為負(fù)數(shù),
∴ …………8分
又∵線段PQ的中點(diǎn)坐標(biāo)滿足
, ……9分
∴直線的方程為:,
即是,
直線在軸的截距 ……………………11分
又∵時(shí),的取值范圍是:
∴直線的截距的取值范圍是……12分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com