直線與圓的位置關(guān)系是( ) A. 相離 B. 相切 C. 相交 D. 與k的取值有關(guān) 查看更多

 

題目列表(包括答案和解析)

直線與圓的位置關(guān)系是(    )

A. 相離      B. 相交     C. 相切       D. 無(wú)法判定

 

查看答案和解析>>

直線與圓的位置關(guān)系是(    )

A.相離       B .相切      C.相交       D.不確定

 

查看答案和解析>>

直線與圓的位置關(guān)系是(   )

A.相離       B .相切      C.相交       D.不確定

 

查看答案和解析>>

直線與圓的位置關(guān)系是( )
A. 相離 B. 相切 C.相交過(guò)圓心 D. 相交不過(guò)圓心

 

查看答案和解析>>

直線與圓的位置關(guān)系是(    )

   A.相離          B.相交           C.相切            D.不確定

查看答案和解析>>

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

A

C

A

C

C

B

B

B

C

A

B

13.   2      14.                15.                16.    ①②③ 

17.解:(1)    (3分)

由題設(shè),

則當(dāng)時(shí),                             (5分)

(2)當(dāng)時(shí),

   (8分)

故m的取值范圍是                     (10分)

18.解析:(1)設(shè)表示事件“一個(gè)實(shí)驗(yàn)組中,服用A有效的小白鼠有只”,

表示事件“一個(gè)實(shí)驗(yàn)組中,服用B有效的小白鼠有只”

依題意有

          

           

           

           

所有的概率為

      (6分)

(2)的可能值為0,1,2,3且.

           

           

           

           

的分布列為

  

0

1

2

3

P

 

 

數(shù)學(xué)期望                              (12分)

19.(1)連接、,過(guò)M作,且于點(diǎn)N.

在正,又平面平面,易證平面,

中,

易知

即                                      (6分)

(2)過(guò)點(diǎn)M作垂足為E,連接EN,由(1)知平面(三垂線定理),即為二面角的平面角,由平面,知

中,

故在中,

故二面角的大小為         (12分)

20.解:(1)

                             (2分)

當(dāng)時(shí),

當(dāng)時(shí),此時(shí)函數(shù)遞減;

當(dāng)時(shí),此時(shí)函數(shù)遞增;                   (5分)

當(dāng)時(shí),取極小值,其極小值為0.                 (6分)

(2)由(1)可知函數(shù)的圖像在處有公共點(diǎn),

因此若存在的隔離直線,則該直線過(guò)這個(gè)公共點(diǎn).

設(shè)隔離直線的斜率為則直線方程為

可得當(dāng)時(shí)恒成立

                              (8分)

下面證明當(dāng)時(shí)恒成立.

當(dāng)時(shí),

當(dāng)時(shí),此時(shí)函數(shù)遞增;

當(dāng)時(shí),此時(shí)函數(shù)遞減;

當(dāng)時(shí),取極大值,其極大值為0.                   (10分)

從而恒成立.

函數(shù)存在唯一的隔離直線                 (12分)

21.(1)橢圓C:   (1分)

直線                                                  (2分)

      (3分)

設(shè)

                        (5分)

若存在K,使M為AB的中點(diǎn),M為ON的中點(diǎn),

,

即N點(diǎn)坐標(biāo)為                                         (6分)

由N點(diǎn)在橢圓,則

故存在使                                           (8分)

(2)

                                                           (12分)

22.解:(1)

 (4分)

是首項(xiàng)為2,公差為1的等差數(shù)列.

(2)

                   (8分)

(3)

                           (12分)

 

 


同步練習(xí)冊(cè)答案