從5名學(xué)生中選出4名學(xué)生參加百米.跳高.籃球比賽.每人只能參加一項(xiàng).并且籃球有兩人參加.則不同的選派方式有 A. 40 B. 60 C. 100 D. 120 查看更多

 

題目列表(包括答案和解析)

從5名學(xué)生中選出4名學(xué)生參加數(shù)學(xué)、物理、化學(xué)、外語(yǔ)競(jìng)賽,其中同學(xué)A不參加物理和化學(xué)競(jìng)賽,則不同的參賽方案種數(shù)為
72
72
.(用數(shù)字作答)

查看答案和解析>>

2、從5名學(xué)生中選出4名分別參加數(shù)學(xué)、物理、化學(xué)、外語(yǔ)競(jìng)賽,其中A不參加物理、化學(xué)競(jìng)賽,則不同的參賽方案種數(shù)為(  )

查看答案和解析>>

從5名學(xué)生中選出4名分別參加數(shù)學(xué)、物理、化學(xué)、外語(yǔ)競(jìng)賽,其中A不參加物理、化學(xué)競(jìng)賽,則不同的參賽方案種數(shù)為

A.24                    B.48                C.120               D.72

 

查看答案和解析>>

從5名學(xué)生中選出4名分別參加數(shù)學(xué)、物理、化學(xué)、外語(yǔ)競(jìng)賽,期中A不參加物理、化學(xué)競(jìng)賽,則不同的參賽方案種數(shù)為(    )

A.24               B.48               C.120                  D.72

查看答案和解析>>

從5名學(xué)生中選出4名分別參加數(shù)學(xué)、物理、化學(xué)、外語(yǔ)競(jìng)賽,其中A不參加物理、化學(xué)競(jìng)賽,則不同的參賽方案種數(shù)為( )
A.24
B.48
C.120
D.72

查看答案和解析>>

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

A

C

A

C

C

B

B

B

C

A

B

13.   2      14.                15.                16.    ①②③ 

17.解:(1)    (3分)

由題設(shè),

則當(dāng)時(shí),                             (5分)

(2)當(dāng)時(shí),

   (8分)

故m的取值范圍是                     (10分)

18.解析:(1)設(shè)表示事件“一個(gè)實(shí)驗(yàn)組中,服用A有效的小白鼠有只”,

表示事件“一個(gè)實(shí)驗(yàn)組中,服用B有效的小白鼠有只”

依題意有

          

           

           

           

所有的概率為

      (6分)

(2)的可能值為0,1,2,3且.

           

           

           

           

的分布列為

  

0

1

2

3

P

 

 

數(shù)學(xué)期望                              (12分)

19.(1)連接、,過(guò)M作,且于點(diǎn)N.

在正,又平面平面,易證平面,

中,

易知

即                                      (6分)

(2)過(guò)點(diǎn)M作垂足為E,連接EN,由(1)知平面(三垂線定理),即為二面角的平面角,由平面,知

中,

故在中,

故二面角的大小為         (12分)

20.解:(1)

                             (2分)

當(dāng)時(shí),

當(dāng)時(shí),此時(shí)函數(shù)遞減;

當(dāng)時(shí),此時(shí)函數(shù)遞增;                   (5分)

當(dāng)時(shí),取極小值,其極小值為0.                 (6分)

(2)由(1)可知函數(shù)的圖像在處有公共點(diǎn),

因此若存在的隔離直線,則該直線過(guò)這個(gè)公共點(diǎn).

設(shè)隔離直線的斜率為則直線方程為

可得當(dāng)時(shí)恒成立

                              (8分)

下面證明當(dāng)時(shí)恒成立.

當(dāng)時(shí),

當(dāng)時(shí),此時(shí)函數(shù)遞增;

當(dāng)時(shí),此時(shí)函數(shù)遞減;

當(dāng)時(shí),取極大值,其極大值為0.                   (10分)

從而恒成立.

函數(shù)存在唯一的隔離直線                 (12分)

21.(1)橢圓C:   (1分)

直線                                                  (2分)

      (3分)

設(shè)

                        (5分)

若存在K,使M為AB的中點(diǎn),M為ON的中點(diǎn),

,

即N點(diǎn)坐標(biāo)為                                         (6分)

由N點(diǎn)在橢圓,則

故存在使                                           (8分)

(2)

                                                           (12分)

22.解:(1)

 (4分)

是首項(xiàng)為2,公差為1的等差數(shù)列.

(2)

                   (8分)

(3)

                           (12分)

 

 


同步練習(xí)冊(cè)答案