(2)若.求實數(shù)k的取范圍. 查看更多

 

題目列表(包括答案和解析)

若實數(shù)x、y、m滿足|x-m|>|y-m|,則稱x比y遠(yuǎn)離m.
(1)若x2-1比1遠(yuǎn)離0,求x的取值范圍;
(2)對任意兩個不相等的正數(shù)a、b,證明:a3+b3比a2b+ab2遠(yuǎn)離2ab
ab
;
(3)已知函數(shù)f(x)的定義域D={{x|x≠
2
+
π
4
,k∈Z,x∈R}
.任取x∈D,f(x)等于sinx和cosx中遠(yuǎn)離0的那個值.寫出函數(shù)f(x)的解析式,并指出它的基本性質(zhì)(結(jié)論不要求證明).

查看答案和解析>>

若實數(shù)x、y、m滿足|x-m|<|y-m|,則稱x比y接近m.
(1)若x2-1比3接近0,求x的取值范圍;
(2)對任意兩個不相等的正數(shù)a、b,證明:a2b+ab2比a3+b3接近2ab
ab
;
(3)已知函數(shù)f(x)的定義域D{x|x≠kπ,k∈Z,x∈R}.任取x∈D,f(x)等于1+sinx和1-sinx中接近0的那個值.寫出函數(shù)f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和單調(diào)性(結(jié)論不要求證明).

查看答案和解析>>

若實數(shù)x,y,m滿足|x-m|>|y-m|,則稱x比y遠(yuǎn)離m.
(Ⅰ)若x2-1比1遠(yuǎn)離0,求x的取值范圍;
(Ⅱ)已知函數(shù)f(x)的定義域D={x|x≠
2
+
π
4
,k∈Z,x∈R}
.任取x∈D,f(x)等于sinx和cosx中遠(yuǎn)離0的那個值.寫出函數(shù)f(x)的解析式,并指出它的基本性質(zhì)(結(jié)論不要求證明).

查看答案和解析>>

若實數(shù)x、y、m滿足|x-m|>|y-m|,則稱x比y遠(yuǎn)離m,
(Ⅰ)若x2-1比1遠(yuǎn)離0,求x的取值范圍;
(Ⅱ)對任意兩個不相等的正數(shù)a、b,證明:a3+b3比a2b+ab2遠(yuǎn)離2ab;
(Ⅲ)已知函數(shù)f(x)的定義域D={x|x≠,k∈Z,x∈R},任取x∈D,f(x)等于sinx和cosx中遠(yuǎn)離0的那個值.寫出函數(shù)f(x)的解析式,并指出它的基本性質(zhì)(結(jié)論不要求證明).

查看答案和解析>>

若實數(shù)x、y、m滿足|x-m|<|y-m|,則稱x比y接近m。
 (I)若x2-1比3接近0,求x的取值范圍;
 (Ⅱ)對任意兩個不相等的正數(shù)a、b,證明:a2b+ab2比a3+b3接近2ab;
 (Ⅲ)已知函數(shù)f(x)的定義域D={x|x≠kπ,k∈Z,x∈R}。任取x∈D,f(x)等于1+sinx和1-sinx中接近0的那個值。寫出函數(shù)f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和單調(diào)性(結(jié)論不要求證明)。

查看答案和解析>>

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

A

C

A

C

C

B

B

B

C

A

B

13.   2      14.                15.                16.    ①②③ 

17.解:(1)    (3分)

由題設(shè),

則當(dāng)時,                             (5分)

(2)當(dāng)時,

   (8分)

故m的取值范圍是                     (10分)

18.解析:(1)設(shè)表示事件“一個實驗組中,服用A有效的小白鼠有只”,

表示事件“一個實驗組中,服用B有效的小白鼠有只”

依題意有

          

           

           

           

所有的概率為

      (6分)

(2)的可能值為0,1,2,3且.

           

           

           

           

的分布列為

  

0

1

2

3

P

 

 

數(shù)學(xué)期望                              (12分)

19.(1)連接、,過M作,且于點N.

在正,又平面平面,易證平面,

中,

易知

即                                      (6分)

(2)過點M作垂足為E,連接EN,由(1)知平面(三垂線定理),即為二面角的平面角,由平面,知

中,

故在中,

故二面角的大小為         (12分)

20.解:(1)

                             (2分)

當(dāng)時,

當(dāng)時,此時函數(shù)遞減;

當(dāng)時,此時函數(shù)遞增;                   (5分)

當(dāng)時,取極小值,其極小值為0.                 (6分)

(2)由(1)可知函數(shù)的圖像在處有公共點,

因此若存在的隔離直線,則該直線過這個公共點.

設(shè)隔離直線的斜率為則直線方程為

可得當(dāng)時恒成立

                              (8分)

下面證明當(dāng)時恒成立.

當(dāng)時,

當(dāng)時,此時函數(shù)遞增;

當(dāng)時,此時函數(shù)遞減;

當(dāng)時,取極大值,其極大值為0.                   (10分)

從而恒成立.

函數(shù)存在唯一的隔離直線                 (12分)

21.(1)橢圓C:   (1分)

直線                                                  (2分)

      (3分)

設(shè)

                        (5分)

若存在K,使M為AB的中點,M為ON的中點,

,

即N點坐標(biāo)為                                         (6分)

由N點在橢圓,則

故存在使                                           (8分)

(2)

                                                           (12分)

22.解:(1)

 (4分)

是首項為2,公差為1的等差數(shù)列.

(2)

                   (8分)

(3)

                           (12分)

 

 


同步練習(xí)冊答案