(Ⅱ)設(shè)以原點(diǎn)為頂點(diǎn).為焦點(diǎn)的拋物線為.若過(guò)點(diǎn)的直線與相交于不同.的兩點(diǎn)..求線段的中點(diǎn)的軌跡方程. 查看更多

 

題目列表(包括答案和解析)

,,為常數(shù),離心率為的雙曲線上的動(dòng)點(diǎn)到兩焦點(diǎn)的距離之和的最小值為,拋物線的焦點(diǎn)與雙曲線的一頂點(diǎn)重合。(Ⅰ)求拋物線的方程;(Ⅱ)過(guò)直線為負(fù)常數(shù))上任意一點(diǎn)向拋物線引兩條切線,切點(diǎn)分別為、,坐標(biāo)原點(diǎn)恒在以為直徑的圓內(nèi),求實(shí)數(shù)的取值范圍。

【解析】第一問(wèn)中利用由已知易得雙曲線焦距為,離心率為,則長(zhǎng)軸長(zhǎng)為2,故雙曲線的上頂點(diǎn)為,所以拋物線的方程

第二問(wèn)中,,,,

故直線的方程為,即,

所以,同理可得:

借助于根與系數(shù)的關(guān)系得到即,是方程的兩個(gè)不同的根,所以

由已知易得,即

解:(Ⅰ)由已知易得雙曲線焦距為,離心率為,則長(zhǎng)軸長(zhǎng)為2,故雙曲線的上頂點(diǎn)為,所以拋物線的方程

(Ⅱ)設(shè),,,

故直線的方程為,即,

所以,同理可得:,

,是方程的兩個(gè)不同的根,所以

由已知易得,即

 

查看答案和解析>>

已知頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸正半軸的拋物線上有一點(diǎn),A點(diǎn)到拋物線焦點(diǎn)的距離為1.
(1)求該拋物線的方程;
(2)設(shè)M(x,y)為拋物線上的一個(gè)定點(diǎn),過(guò)M作拋物線的兩條互相垂直的弦MP,MQ,求證:PQ恒過(guò)定點(diǎn)(x+2,-y).
(3)直線x+my+1=0與拋物線交于E,F(xiàn)兩點(diǎn),在拋物線上是否存在點(diǎn)N,使得△NEF為以EF為斜邊的直角三角形.

查看答案和解析>>

曲線C1是以原點(diǎn)O為中心,F(xiàn)1,F(xiàn)2為焦點(diǎn)的橢圓的一部分.曲線C2是以O(shè)為頂點(diǎn),F(xiàn)2為焦點(diǎn)的拋物線的一部分,A是曲線C1和C2的交點(diǎn)且∠AF2F1為鈍角,若|AF1|=,|AF2|=
(I)求曲線C1和C2的方程;
(II)設(shè)點(diǎn)C是C2上一點(diǎn),若|CF1|=|CF2|,求△CF1F2的面積.

查看答案和解析>>

如圖,曲線C1是以原點(diǎn)O為中心,F(xiàn)1,F(xiàn)2為焦點(diǎn)的橢圓的一部分.曲線C2是以O(shè)為頂點(diǎn),F(xiàn)2為焦點(diǎn)的拋物線的一部分,A是曲線C1和C2的交點(diǎn)且∠AF2F1為鈍角,若|AF1|=,|AF2|=
(I)求曲線C1和C2的方程;
(II)設(shè)點(diǎn)C是C2上一點(diǎn),若|CF1|=|CF2|,求△CF1F2的面積.

查看答案和解析>>

已知為中心在原點(diǎn)焦點(diǎn)在的橢圓的左、右焦點(diǎn),拋物線為頂點(diǎn),為焦點(diǎn),設(shè)為橢圓與拋物線的一個(gè)交點(diǎn),如果橢圓的離心率為,且,則的值為(    )

                                                            

查看答案和解析>>


同步練習(xí)冊(cè)答案