(2)過O在內(nèi)作OM⊥AC,交AC的反向延長線于M,連結DM.則AC⊥DM.∴∠DMO 為二面角D―AC―B的平面角. 又在△DOA中.OA=2cos60°=1.且 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)設動點P到點A(-1,0)和B(1,0)的距離分別為d1和d2,∠APB=2θ,且存在常數(shù)λ(0<λ<1),使得d1d2sin2θ=λ.
(1)證明:動點P的軌跡C為雙曲線,并求出C的方程;
(2)過點B作直線雙曲線C的右支于M,N兩點,試確定λ的范圍,使
OM
ON
=0
,其中點O為坐標原點.

查看答案和解析>>

已知A(-3,0),B(3,0).若△ABC周長為16.
(1)求點C軌跡L的方程;
(2)過O作直線OM、ON,分別交軌跡L于M、N點,且OM⊥ON,求S△MON的最小值;
(3)在(2)的前提下過O作OP⊥MN交于P點.求證點P在定圓上,并求該圓的方程.

查看答案和解析>>

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,一條準線l:x=2.
(1)求橢圓C的方程;
(2)設O為坐標原點,M是l上的點,F(xiàn)為橢圓C的右焦點,過點F作OM的垂線與以OM為直徑的圓D交于P,Q兩點.
①若PQ=
6
,求圓D的方程;
②若M是l上的動點,求證:點P在定圓上,并求該定圓的方程.

查看答案和解析>>

(2012•黃浦區(qū)一模)已知兩點A(-1,0)、B(1,0),點P(x,y)是直角坐標平面上的動點,若將點P的橫坐標保持不變、縱坐標擴大到
2
倍后得到點Q(x,
2
y
)滿足
AQ
BQ
=1

(1)求動點P所在曲線C的軌跡方程;
(2)過點B作斜率為-
2
2
的直線l交曲線C于M、N兩點,且滿足
OM
+
ON
+
OH
=
0
,又點H關于原點O的對稱點為點G,試問四點M、G、N、H是否共圓,若共圓,求出圓心坐標和半徑;若不共圓,請說明理由.

查看答案和解析>>

精英家教網(wǎng)已知橢圓中心在坐標原點,短軸長為2,一條準線l的方程為x=2.
(1)求橢圓方程;
(2)設O為坐標原點,F(xiàn)是橢圓的右焦點,點M是直線l上的動點,過點F作OM的垂線與以OM為直徑的圓交于點N,求證:線段ON的長為定值.

查看答案和解析>>


同步練習冊答案