25.如圖.用長為18 m的籬笆.兩面靠墻圍成矩形的苗圃.(1)設(shè)矩形的一邊為(m).面積為(m2).求關(guān)于的函數(shù)關(guān)系式.并寫出自變量的取值范圍,(2)當(dāng)為何值時(shí).所圍苗圃的面積最大.最大面積是多少? 查看更多

 

題目列表(包括答案和解析)

(本小題12分)如圖,有五個(gè)邊長為1的小正方形組成的圖形紙,我們可以把它剪開后拼成一個(gè)大正方形。

 

1.拼成的大正方形的面積與邊長分別是多少?

2.你能在下圖3×3方格中,連接四個(gè)格點(diǎn),組成面積為5的正方形嗎?

3.你還能把十個(gè)小正方形組成的圖形紙,剪開并拼成更大的正方形嗎?若能,請(qǐng)?jiān)谙聢D中畫出圖形,并求出它的邊長是多少?

 

 

查看答案和解析>>

(本小題12分)如圖,直線軸于A點(diǎn),交軸于B點(diǎn),過A、B兩點(diǎn)的拋物線交軸于另一點(diǎn)C(3,0).

1.⑴ 求拋物線的解析式;

2.⑵ 在拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使△ABQ是等腰三角形?若存在,求出符合條件的Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

 

查看答案和解析>>

(本小題12分)如圖,直線軸于A點(diǎn),交軸于B點(diǎn),過A、B兩點(diǎn)的拋物線交軸于另一點(diǎn)C(3,0).

1.⑴ 求拋物線的解析式;

2.⑵ 在拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使△ABQ是等腰三角形?若存在,求出符合條件的Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

 

查看答案和解析>>

(本小題12分)如圖,有五個(gè)邊長為1的小正方形組成的圖形紙,我們可以把它剪開后拼成一個(gè)大正方形。

 

1.拼成的大正方形的面積與邊長分別是多少?

2.你能在下圖3×3方格中,連接四個(gè)格點(diǎn),組成面積為5的正方形嗎?

3.你還能把十個(gè)小正方形組成的圖形紙,剪開并拼成更大的正方形嗎?若能,請(qǐng)?jiān)谙聢D中畫出圖形,并求出它的邊長是多少?

 

 

查看答案和解析>>

(本小題12分)

如圖,中,.它的頂點(diǎn)的坐標(biāo)為,頂點(diǎn)的坐標(biāo)為,點(diǎn)從點(diǎn)出發(fā),沿的方向勻速運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā),沿軸正方向以相同速度運(yùn)動(dòng),當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為秒.

(1)求的度數(shù).(直接寫出結(jié)果)

(2)當(dāng)點(diǎn)上運(yùn)動(dòng)時(shí),的面積與時(shí)間(秒)之間的函數(shù)圖象為拋物線的一部分(如圖),求點(diǎn)的運(yùn)動(dòng)速度.

(3)求題(2)中面積與時(shí)間之間的函數(shù)關(guān)系式,及面積取最大值時(shí)點(diǎn)的坐標(biāo).

(4)如果點(diǎn)保持題(2)中的速度不變,當(dāng)t取何值時(shí),PO=PQ,請(qǐng)說明理由.

 

查看答案和解析>>

一、選擇題(本題有12小題,共48分)

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

C

B

A

C

D

A

B

A

C

B

D

 

二、填空題(本大題為選做題,在8小題中做對(duì)6小題即得滿分30分,多做答錯(cuò)不扣分)

13. 2       14.         15.        16.答案不唯一,比如

17.70°     18.10、30     19.1476.5      20. +、1

三、解答題(本題有7小題,共72分)

說明:本參考答案中除25、27題外每題只給出了一種解答,對(duì)于其他解答,只要解法正確,參照本評(píng)分建議給分。

21. 解:原方程變形得:,   ………………………………2分

                    .   ……………………………………………4分

    ∴  方程的根為:、 、  .   …………………………8分

22.(1)∠ABC= 135 °,        ………………………………………………………2分

 BC=;           …………………………………………………………4分

(2)能判斷△ABC與△DEF相似(或△ABC∽△DEF)          ………………5分

     這是因?yàn)椤螦BC =∠DEF = 135 ° ,,

      ∴△ABC∽△DEF.             …………………………………………8分

23. (1) 在這組數(shù)據(jù)中,中位數(shù)是30.0 ,     ……………………………………2分

眾數(shù)是30.0 ,                    …………………………………………………4分

平均數(shù)是32.0 ;                 ……………………………………6分

(若填為30、30、32,均暫不扣分)

(2) 憑經(jīng)驗(yàn),大廈高約30.0 .(單位未寫暫不扣分)   …………………7分

只要說得有理就給1分,比如數(shù)據(jù)44.0誤差太大,或測量錯(cuò)誤不可信等等.8分

24. 解:在R t△BCD中,∵  BD=5,    ∴  BC=5= 4.1955≈4.20.  ……4分

         在R t△BCD中,BE=BC+CE= 6.20,       …………………………………5分

          ∴  DE=       ……………………………………………6分

             ==

≈7.96   ……………………………………………………………9分

答:BC的長度約為4.20,鋼纜ED的長度約7.96.  …………………10分

(若BC=4.1955暫不扣分,但是ED的長度未保留三個(gè)有效數(shù)字扣1分)

25. 解:(1) 由已知,矩形的另一邊長為  ………………………………1分

=   ……………………………………………………3分

     =   ……………………………………………………………5分

自變量的取值范圍是0<<18.   ……………………7分

(2)∵  ==  …………………………………10分

∴ 當(dāng)=9時(shí)(0<9<18),苗圃的面積最大    ……………………11分

最大面積是81       ………………………………………………12分

又解:  ∵  =-1<0,有最大值,         …………………………8分

∴  當(dāng) =時(shí)(0<9<18),  ………………………10分

  )  ……………………………12分

(未指出0<9<18暫不扣分)

26. 解:(1)       ……………………………1分

                  ;    ………………………3分

又   ,      ……………………………………4分

∴   .  …6分

…8分

          

                  ………………10分

       ……………………………………11分

      …12分

(說明:若在整個(gè)推導(dǎo)過程中,始終帶根號(hào)運(yùn)算當(dāng)然也正確。)

27.解: ⑴ C(5,-4);(過程1分,縱、橫坐標(biāo)答對(duì)各得1分)        ………… 3分

⑵ 能            ……………………………………………………………4分

 連結(jié)AE ,∵BE是⊙O的直徑, ∴∠BAE=90°.        ………5分

在△ABE與△PBA中,AB2=BP? BE , 即, 又∠ABE=∠PBA,

∴△ABE∽△PBA .              …………………………………7分

∴∠BPA=∠BAE=90°,  即AP⊥BE .          …………………8分

⑶ 分析:假設(shè)在直線EB上存在點(diǎn)Q,使AQ2=BQ? EQ. Q點(diǎn)位置有三種情況:

①若三條線段有兩條等長,則三條均等長,于是容易知點(diǎn)C即點(diǎn)Q;

②若無兩條等長,且點(diǎn)Q在線段EB上,由Rt△EBA中的射影定理知點(diǎn)Q即為AQ⊥EB之垂足;

③若無兩條等長,且當(dāng)點(diǎn)Q在線段EB外,由條件想到切割線定理,知QA切⊙C于點(diǎn)A.設(shè)Q(),并過點(diǎn)Q作QR⊥x軸于點(diǎn)R,由相似三角形性質(zhì)、切割線定理、勾股定理、三角函數(shù)或直線解析式等可得多種解法.

解題過程:

① 當(dāng)點(diǎn)Q1與C重合時(shí),AQ1=Q1B=Q1E, 顯然有AQ12=BQ1? EQ1 ,

∴Q1(5, -4)符合題意;             ………………………………9分

② 當(dāng)Q2點(diǎn)在線段EB上, ∵△ABE中,∠BAE=90°

∴點(diǎn)Q2為AQ2在BE上的垂足,           ………………………10分

∴AQ2== 4.8(或).

∴Q2點(diǎn)的橫坐標(biāo)是2+ AQ2?∠BAQ2= 2+3.84=5.84,

又由AQ2?∠BAQ2=2.88,

∴點(diǎn)Q2(5.84,-2.88),          …………11分

③方法一:若符合題意的點(diǎn)Q3在線段EB外,

則可得點(diǎn)Q3為過點(diǎn)A的⊙C的切線與直線BE在第一象限的交點(diǎn).

由Rt△Q3BR∽R(shí)t△EBA,△EBA的三邊長分別為6、8、10,

故不妨設(shè)BR=3t,RQ3=4t,BQ3=5t,           …………………………12分

由Rt△ARQ3∽R(shí)t△EAB得,       ………………………13分

得t=,

〖注:此處也可由列得方程; 或由AQ32 = Q3B?Q3E=Q3R2+AR2列得方程)等等〗

∴Q3點(diǎn)的橫坐標(biāo)為8+3t=, Q3點(diǎn)的縱坐標(biāo)為,

即Q3,) .          ……………………14分

方法二:如上所設(shè)與添輔助線, 直線 BE過B(8, 0), C(5, -4), 

∴直線BE的解析式是.           ……………12分

設(shè)Q3),過點(diǎn)Q3作Q3R⊥x軸于點(diǎn)R,

∵易證∠Q3AR =∠AEB得 Rt△AQ3R∽R(shí)t△EAB, 

,  即   ,        ………………13分

∴t=,進(jìn)而點(diǎn)Q3 的縱坐標(biāo)為,∴Q3).  ………14分

方法三:若符合題意的點(diǎn)Q3在線段EB外,連結(jié)Q3A并延長交軸于F,

        ∴∠Q3AB =∠Q3EA,,

        在R t△OAF中有OF=2×=,點(diǎn)F的坐標(biāo)為(0,),

∴可得直線AF的解析式為,          ………………12分

又直線BE的解析式是,             ………………13分

∴可得交點(diǎn)Q3,).              ………………………14分


同步練習(xí)冊(cè)答案