即遞增. 查看更多

 

題目列表(包括答案和解析)

已知遞增等差數(shù)列滿足:,且成等比數(shù)列.

(1)求數(shù)列的通項(xiàng)公式

(2)若不等式對(duì)任意恒成立,試猜想出實(shí)數(shù)的最小值,并證明.

【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的運(yùn)用以及數(shù)列求和的運(yùn)用。第一問中,利用設(shè)數(shù)列公差為,

由題意可知,即,解得d,得到通項(xiàng)公式,第二問中,不等式等價(jià)于,利用當(dāng)時(shí),;當(dāng)時(shí),;而,所以猜想,的最小值為然后加以證明即可。

解:(1)設(shè)數(shù)列公差為,由題意可知,即,

解得(舍去).      …………3分

所以,.        …………6分

(2)不等式等價(jià)于,

當(dāng)時(shí),;當(dāng)時(shí),;

,所以猜想,的最小值為.     …………8分

下證不等式對(duì)任意恒成立.

方法一:數(shù)學(xué)歸納法.

當(dāng)時(shí),,成立.

假設(shè)當(dāng)時(shí),不等式成立,

當(dāng)時(shí),, …………10分

只要證  ,只要證  ,

只要證  ,只要證  ,

只要證  ,顯然成立.所以,對(duì)任意,不等式恒成立.…14分

方法二:?jiǎn)握{(diào)性證明.

要證 

只要證  ,  

設(shè)數(shù)列的通項(xiàng)公式,        …………10分

,    …………12分

所以對(duì),都有,可知數(shù)列為單調(diào)遞減數(shù)列.

,所以恒成立,

的最小值為

 

查看答案和解析>>

如圖,設(shè)圓的半徑為1,弦心距為;正n邊形的邊長(zhǎng)為,面積為.由勾股定理,得

  容易知道

  觀察圖1,不難發(fā)現(xiàn),正2n邊形的面積等于正n邊形的面積加上n個(gè)等腰三角形的面積,即

利用這個(gè)遞推公式,我們可以得到:

正六邊形的面積

正十二邊形的面積________;

正二十四邊形的面積________;

請(qǐng)問n的輸入值滿足什么條件?n的輸出組表示什么?當(dāng)n不斷增大,的值不斷趨近于什么?用循環(huán)結(jié)構(gòu)編寫出程序,還用Scilab語言編寫一個(gè)程序.

查看答案和解析>>

如圖,設(shè)圓的半徑為1,弦心距為;正n邊形的邊長(zhǎng)為,面積為.由勾股定理,得

  容易知道

  觀察圖1,不難發(fā)現(xiàn),正2n邊形的面積等于正n邊形的面積加上n個(gè)等腰三角形的面積,即

利用這個(gè)遞推公式,我們可以得到:

正六邊形的面積

正十二邊形的面積________;

正二十四邊形的面積________;

請(qǐng)問n的輸入值滿足什么條件?n的輸出組表示什么?當(dāng)n不斷增大,的值不斷趨近于什么?用循環(huán)結(jié)構(gòu)編寫出程序,還用Scilab語言編寫一個(gè)程序.

查看答案和解析>>

如下圖,設(shè)圓的半徑為1,弦心距為hn;正n邊形的邊長(zhǎng)為xn,面積為Sn,由勾股定理,得

hn=容易知道x6=1.

    觀察上圖,不難發(fā)現(xiàn),正2n邊形的面積等于正n邊形的面積加上n個(gè)等腰三角形的面積,即S2n=Sn+n··xn(1-hn)(n≥6)利用這個(gè)遞推公式,我們可以得到:

正六邊形的面積S6=6×;正十二邊形的面積S12=_______________;正二十四邊形的面積S24=_______________________.

……

    當(dāng)n不斷增大,S2n的值不斷趨近于什么?

    用循環(huán)結(jié)構(gòu)編寫程序.

查看答案和解析>>

設(shè)命題內(nèi)單調(diào)遞增,命題

A.充分不必要條件                                        B.必要不充分條件

C.充分必要條件                                           D.即不充分也不必要條件

查看答案和解析>>


同步練習(xí)冊(cè)答案