題目列表(包括答案和解析)
已知是等差數列,其前n項和為Sn,是等比數列,且,.
(Ⅰ)求數列與的通項公式;
(Ⅱ)記,,證明().
【解析】(1)設等差數列的公差為d,等比數列的公比為q.
由,得,,.
由條件,得方程組,解得
所以,,.
(2)證明:(方法一)
由(1)得
①
②
由②-①得
而
故,
(方法二:數學歸納法)
① 當n=1時,,,故等式成立.
② 假設當n=k時等式成立,即,則當n=k+1時,有:
即,因此n=k+1時等式也成立
由①和②,可知對任意,成立.
n2+n |
12+1 |
k2+k |
(k+1)2+(k+1) |
k2+3k+2 |
(k2+3k+2)+(k+2) |
(k+2)2 |
A、過程全部正確 |
B、n=1驗得不正確 |
C、歸納假設不正確 |
D、從n=k到n=k+1的推理不正確 |
1 |
2 |
1 |
3 |
1 |
4 |
1 |
2n-1 |
n |
2 |
1 |
2 |
1 |
3 |
1 |
4 |
1 |
2n-1 |
n |
2 |
A、1項 |
B、k-1項 |
C、k項 |
D、2k項 |
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com