(II)由 查看更多

 

題目列表(包括答案和解析)

(08年上虞市質(zhì)檢一理)已知橢圓C1 (0<a<,0<b<2)與橢圓C2有相同的焦點. 直線L:y=k(x+1)與兩個橢圓的四個交點,自上而下順次記為A、B、C、D.

(I)求線段BC的長(用k和a表示);

(II)是否存在這樣的直線L,使線段AB、BC、CD的長按此順序構(gòu)成一個等差數(shù)列.請說明詳細的理由.

查看答案和解析>>

(2012新課標理)某花店每天以每枝元的價格從農(nóng)場購進若干枝玫瑰花,然后以每枝元的價格出售,

如果當天賣不完,剩下的玫瑰花作垃圾處理.

(1)若花店一天購進枝玫瑰花,求當天的利潤(單位:元)關(guān)于當天需求量

(單位:枝,)的函數(shù)解析式.

(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:

以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.

(i)若花店一天購進枝玫瑰花,表示當天的利潤(單位:元),求的分布列,

數(shù)學期望及方差;

(ii)若花店計劃一天購進16枝或17枝玫瑰花,你認為應購進16枝還是17枝?

請說明理由.

查看答案和解析>>

(滿分12分)直線l 與拋物線y2 = 4x 交于兩點A、B,O 為原點,且= -4.
(I)       求證:直線l 恒過一定點;
(II)     若 4≤| AB | ≤,求直線l 斜率k 的取值范圍;
(Ⅲ) 設(shè)拋物線的焦點為F,∠AFB = θ,試問θ 能否等于120°?若能,求出相應的直線l 的方程;若不能,請說明理由.

查看答案和解析>>

(本題滿分12分)
如圖6,在平面直角坐標系中,設(shè)點,直線:,點在直線上移動,
是線段軸的交點, .

(I)求動點的軌跡的方程;
(II)設(shè)圓,且圓心在曲線上,是圓軸上截得的弦,當運動時弦長是否為定值?請說明理由.

查看答案和解析>>

由于當前學生課業(yè)負擔較重,造成青少年視力普遍下降,現(xiàn)從某中學隨機抽取16名學生,經(jīng)校醫(yī)用對數(shù)視力表檢査得到每個學生的視力狀況的莖葉圖(以小數(shù)點前的一位數(shù)字為莖,小數(shù)點后的一位數(shù)字為葉)如下:

(I )若視力測試結(jié)果不低于5 0,則稱為“好視力”,求校醫(yī)從這16人中隨機選取3人,至多有1人是“好視力”的概率;

(II)以這16人的樣本數(shù)據(jù)來估計整個學校的總體數(shù)據(jù),若從該校(人數(shù)很多)任選3人,記表示抽到“好視力”學生的人數(shù),求的分布列及數(shù)學期望,據(jù)此估計該校高中學生(共有5600人)好視力的人數(shù)

 

查看答案和解析>>


同步練習冊答案