(2)的公比為q.若數(shù)列滿足.求的前項和. 查看更多

 

題目列表(包括答案和解析)

若 數(shù)列{an}前n項和為Sn(n∈N*)
(1)若首項a1=1,且對于任意的正整數(shù)n(n≥2)均有
Sn+k
Sn-k
=
an-k
an+k
,(其中k為正實常數(shù)),試求出數(shù)列{an}的通項公式.
(2)若數(shù)列{an}是等比數(shù)列,公比為q,首項為a1,k為給定的正實數(shù),滿足:
①a1>0,且0<q<1
②對任意的正整數(shù)n,均有Sn-k>0;
試求函數(shù)f(n)=
Sn+k
Sn-k
+k
an-k
an+k
的最大值(用a1和k表示)

查看答案和解析>>

數(shù)列{an}的前n項和為Sn(n∈N*),Sn=(m+1)-man對任意的n∈N*都成立,其中m為常數(shù),且m<-1.
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)記數(shù)列{an}的公比為q,設(shè)q=f(m).若數(shù)列{bn}滿足;b1=a1,bn=f(bn-1)(n≥2,n∈N*).求證:數(shù)列{
1bn
}
是等差數(shù)列;
(3)在(2)的條件下,設(shè)cn=bn•bn+1,數(shù)列{cn}的前n項和為Tn.求證:Tn<1.

查看答案和解析>>

已知公比為q的等比數(shù)列{an}是遞減數(shù)列,且滿足a1+a2+a3=
13
9
,a1a2a3=
1
27

(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{(2n-1)•an}的前n項和為Tn;
(Ⅲ)若bn=
n
3n-1an
+
3
2
(n∈N*)
,證明:
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
4
35

查看答案和解析>>

數(shù)列{an}的前n項和為Sn(n∈N*),Sn=(m+1)-man對任意的n∈N*都成立,其中m為常數(shù),且m<-1.
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)記數(shù)列{an}的公比為q,設(shè)q=f(m).若數(shù)列{bn}滿足;b1=a1,bn=f(bn-1)(n≥2,n∈N*).求證:數(shù)列{
1
bn
}
是等差數(shù)列;
(3)在(2)的條件下,設(shè)cn=bn•bn+1,數(shù)列{cn}的前n項和為Tn.求證:Tn<1.

查看答案和解析>>

精英家教網(wǎng)將數(shù)列{an}中的所有項按每一行比上一行多一項的規(guī)則排成如下表:
記表中的第一列數(shù)a1,a2,a4,a7,…,構(gòu)成的數(shù)列為{bn},b1=a1=1,Sn為數(shù)列{bn}的前n項和,且滿足
2bn
bnSn-
S
2
n
=1(n≥2)

(1)求證數(shù)列{
1
Sn
}
成等差數(shù)列,并求數(shù)列{bn}的通項公式;
(2)上表中,若a81項所在行的數(shù)按從左到右的順序構(gòu)成等比數(shù)列,且公比q為正數(shù),求當a81=-
4
91
時,公比q的值.

查看答案和解析>>


同步練習冊答案