題目列表(包括答案和解析)
已知數(shù)列的前項和為,且 (N*),其中.
(Ⅰ) 求的通項公式;
(Ⅱ) 設 (N*).
①證明: ;
② 求證:.
【解析】本試題主要考查了數(shù)列的通項公式的求解和運用。運用關(guān)系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到,②由于,
所以利用放縮法,從此得到結(jié)論。
解:(Ⅰ)當時,由得. ……2分
若存在由得,
從而有,與矛盾,所以.
從而由得得. ……6分
(Ⅱ)①證明:
證法一:∵∴
∴
∴.…………10分
證法二:,下同證法一. ……10分
證法三:(利用對偶式)設,,
則.又,也即,所以,也即,又因為,所以.即
………10分
證法四:(數(shù)學歸納法)①當時, ,命題成立;
②假設時,命題成立,即,
則當時,
即
即
故當時,命題成立.
綜上可知,對一切非零自然數(shù),不等式②成立. ………………10分
②由于,
所以,
從而.
也即
已知,函數(shù)(其中為自然對數(shù)的底數(shù)).
(Ⅰ)求函數(shù)在區(qū)間上的最小值;
(Ⅱ)設數(shù)列的通項,是前項和,證明:.
【解析】本試題主要考查導數(shù)在研究函數(shù)中的運用,求解函數(shù)給定區(qū)間的最值問題,以及能結(jié)合數(shù)列的相關(guān)知識,表示數(shù)列的前n項和,同時能構(gòu)造函數(shù)證明不等式的數(shù)學思想。是一道很有挑戰(zhàn)性的試題。
數(shù)列,()由下列條件確定:①;②當時,與滿足:當時,,;當時,,.
(Ⅰ)若,,求,,,并猜想數(shù)列的通項公式(不需要證明);
(Ⅱ)在數(shù)列中,若(,且),試用表示,;
(Ⅲ)在(Ⅰ)的條件下,設數(shù)列滿足,, (其中為給定的不小于2的整數(shù)),求證:當時,恒有.
(08年黃岡市質(zhì)檢文) (14分) 把自然數(shù)按上小下大、左小右大的原則排成如圖的三角形數(shù)表(每行比上一行多一個數(shù)).設是位于這個三角形數(shù)表中從上往下數(shù)第行、從左往右數(shù)的第個數(shù)(如).
⑴試用表示(不要求證明);
⑵若,求的值;
⑶記三角形數(shù)表從上往下數(shù)第行各數(shù)和為,令,若數(shù)列的前項和為,求.
|
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com