(3)證明存在.使得對任意均成立. 查看更多

 

題目列表(包括答案和解析)

可以證明,對任意的n∈N*,有(1+2+…+n)2=13+23+…+n3成立.下面嘗試推廣該命題:
(1)設(shè)由三項組成的數(shù)列a1,a2,a3每項均非零,且對任意的n∈{1,2,3}有(a1+a2+…+an2=a13+a23+…+an3成立,求所有滿足條件的數(shù)列;
(2)設(shè)數(shù)列{an}每項均非零,且對任意的n∈N*有(a1+a2+…+an2=a13+a23+…+an3成立,數(shù)列{an}的前n項和為Sn.求證:an+12-an+1=2Sn,n∈N*;
(3)是否存在滿足(2)中條件的無窮數(shù)列{an},使得a2011=2009?若存在,寫出一個這樣的無窮數(shù)列(不需要證明它滿足條件); 若不存在,說明理由.

查看答案和解析>>

可以證明,對任意的n∈N*,有(1+2+…+n)2=13+23+…+n3成立.下面嘗試推廣該命題:
(1)設(shè)由三項組成的數(shù)列a1,a2,a3每項均非零,且對任意的n∈{1,2,3}有(a1+a2+…+an2=a13+a23+…+an3成立,求所有滿足條件的數(shù)列;
(2)設(shè)數(shù)列{an}每項均非零,且對任意的n∈N*有(a1+a2+…+an2=a13+a23+…+an3成立,數(shù)列{an}的前n項和為Sn.求證:an+12-an+1=2Sn,n∈N*;
(3)是否存在滿足(2)中條件的無窮數(shù)列{an},使得a2011=2009?若存在,寫出一個這樣的無窮數(shù)列(不需要證明它滿足條件); 若不存在,說明理由.

查看答案和解析>>

可以證明,對任意的n∈N*,有(1+2+…+n)2=13+23+…+n3成立.下面嘗試推廣該命題:
(1)設(shè)由三項組成的數(shù)列a1,a2,a3每項均非零,且對任意的n∈{1,2,3}有(a1+a2+…+an2=a13+a23+…+an3成立,求所有滿足條件的數(shù)列;
(2)設(shè)數(shù)列{an}每項均非零,且對任意的n∈N*有(a1+a2+…+an2=a13+a23+…+an3成立,數(shù)列{an}的前n項和為Sn.求證:an+12-an+1=2Sn,n∈N*;
(3)是否存在滿足(2)中條件的無窮數(shù)列{an},使得a2012=-2011?若存在,寫出一個這樣的無窮數(shù)列(不需要證明它滿足條件); 若不存在,說明理由.

查看答案和解析>>

(2012•姜堰市模擬)可以證明,對任意的n∈N*,有(1+2+…+n)2=13+23+…+n3成立.下面嘗試推廣該命題:
(1)設(shè)由三項組成的數(shù)列a1,a2,a3每項均非零,且對任意的n∈{1,2,3}有(a1+a2+…+an2=a13+a23+…+an3成立,求所有滿足條件的數(shù)列;
(2)設(shè)數(shù)列{an}每項均非零,且對任意的n∈N*有(a1+a2+…+an2=a13+a23+…+an3成立,數(shù)列{an}的前n項和為Sn.求證:an+12-an+1=2Sn,n∈N*
(3)是否存在滿足(2)中條件的無窮數(shù)列{an},使得a2012=-2011?若存在,寫出一個這樣的無窮數(shù)列(不需要證明它滿足條件); 若不存在,說明理由.

查看答案和解析>>

設(shè)數(shù)列{an}的各項均為正數(shù).若對任意的n∈N*,存在k∈N*,使得=an·an+2k成立,則稱數(shù)列{an}為“Jk型”數(shù)列.
(1)若數(shù)列{an}是“J2型”數(shù)列,且a2=8,a8=1,求a2n
(2)若數(shù)列{an}既是“J3型”數(shù)列,又是“J4型”數(shù)列,證明:數(shù)列{an}是等比數(shù)列.

查看答案和解析>>


同步練習(xí)冊答案