(3)把代入化簡(jiǎn)得 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)f(x)=2x3-3(a-1)x2+1,其中a≥1.

(1)求f(x)的單調(diào)區(qū)間;

(2)討論f(x)的極值.

所以f(-1)=2是極大值,f(1)=-2是極小值.

(2)曲線方程為y=x3-3x,點(diǎn)A(0,16)不在曲線上.

設(shè)切點(diǎn)為M(x0,y0),則點(diǎn)M的坐標(biāo)滿足y0=x03-3x0.

因f′(x0)=3(x02-1),故切線的方程為y-y0=3(x02-1)(x-x0).

注意到點(diǎn)A(0,16)在切線上,有16-(x03-3x0)=3(x02-1)(0-x0),

化簡(jiǎn)得x03=-8,解得x0=-2.

所以切點(diǎn)為M(-2,-2),

切線方程為9x-y+16=0.

查看答案和解析>>

已知曲線上動(dòng)點(diǎn)到定點(diǎn)與定直線的距離之比為常數(shù)

(1)求曲線的軌跡方程;

(2)若過點(diǎn)引曲線C的弦AB恰好被點(diǎn)平分,求弦AB所在的直線方程;

(3)以曲線的左頂點(diǎn)為圓心作圓,設(shè)圓與曲線交于點(diǎn)與點(diǎn),求的最小值,并求此時(shí)圓的方程.

【解析】第一問利用(1)過點(diǎn)作直線的垂線,垂足為D.

代入坐標(biāo)得到

第二問當(dāng)斜率k不存在時(shí),檢驗(yàn)得不符合要求;

當(dāng)直線l的斜率為k時(shí),;,化簡(jiǎn)得

第三問點(diǎn)N與點(diǎn)M關(guān)于X軸對(duì)稱,設(shè),, 不妨設(shè)

由于點(diǎn)M在橢圓C上,所以

由已知,則

,

由于,故當(dāng)時(shí),取得最小值為

計(jì)算得,,故,又點(diǎn)在圓上,代入圓的方程得到.  

故圓T的方程為:

 

查看答案和解析>>

(2010•臺(tái)州一模)我們把平面內(nèi)與直線垂直的非零向量稱為直線的法向量,在平面直角坐標(biāo)系中,利用求動(dòng)點(diǎn)軌跡方程的方法,可以求出過點(diǎn)A(-3,4),且法向量為
n
=(1,-2)
的直線(點(diǎn)法式)方程為1×(x+3)+(-2)×(y-4)=0,化簡(jiǎn)得x-2y+11=0. 類比以上方法,在空間直角坐標(biāo)系中,經(jīng)過點(diǎn)A(3,4,5),且法向量為
n
=(2,1,3)
的平面(點(diǎn)法式)方程為
2x+y+3z-21=0
2x+y+3z-21=0
(請(qǐng)寫出化簡(jiǎn)后的結(jié)果).

查看答案和解析>>

我們把在平面內(nèi)與直線垂直的非零向量稱為直線的法向量,在平面直角坐標(biāo)系xOy中,利用求動(dòng)點(diǎn)軌跡方程的方法,可以求出過點(diǎn)A(-3,4),且其法向量為
n
=(1,-2)
的直線方程為1x(x+3)+(-2)×(y-4)=0,化簡(jiǎn)得x-2y+11=0.類比上述方法,在空間坐標(biāo)系O-xyz中,經(jīng)過點(diǎn)A(1,2,3),且其法向量為
n
=(-1,-2,1)
的平面方程為
 

查看答案和解析>>

我們把平面內(nèi)與直線垂直的非零向量稱為直線的法向量,在平面直角坐標(biāo)系中,利用求動(dòng)點(diǎn)軌跡方程的方法,可以求出過點(diǎn)A(-3,4),且法向量為=(1,-2)的直線(點(diǎn)法式)方程為:1×(x+3)+(-2)×(y-4)=0,化簡(jiǎn)得x-2y+11=0.類比以上方法,在空間直角坐標(biāo)系o-xyz中,經(jīng)過點(diǎn)A(1,2,3)且法向量為=(-1,-2,1)的平面的方程為____________          

(化簡(jiǎn)后用關(guān)于x,y,z的一般式方程表示)

 

查看答案和解析>>


同步練習(xí)冊(cè)答案