即(-1)n-1λ<()n-1恒成立. 查看更多

 

題目列表(包括答案和解析)

德國數(shù)學(xué)家在1937年提出了一個著名的猜想:“任給一個正整數(shù)n,若n是偶數(shù),則將它減半(即
n
2
);若n是奇數(shù),則將它乘3加1(即3n+1).不斷重復(fù)這樣的運算,經(jīng)過有限步后,一定可以得到1”.如6→3→10→5→16→8→4→2→1,如果對正整數(shù)n(首項),按上述規(guī)則實施變換(注:1可以多次出現(xiàn))后的第八項為1,那么n的所有可能值共有( 。

查看答案和解析>>

(2012•浦東新區(qū)二模)在證明恒等式12+22+32+…+n2=
1
6
n(n+1)(2n+1)(n∈N*)
時,可利用組合數(shù)表示n2,即n2=2
C
2
n+1
-
C
1
n
(n∈N*)
推得.類似地,在推導(dǎo)恒等式13+23+33+…+n3=[
n(n+1)
2
]2(n∈N*)
時,也可以利用組合數(shù)表示n3推得.則n3=
6
C
3
n+1
+
C
1
n
6
C
3
n+1
+
C
1
n

查看答案和解析>>

若兩集合A=[0,3],B=[0,3],分別從集合A、B中各任取一個元素m、n,即滿足m∈A,n∈B,記為(m,n),
(Ⅰ)若m∈Z,n∈Z,寫出所有的(m,n)的取值情況,并求事件“方程
x2
m+1
+
y2
n+1
=1
所對應(yīng)的曲線表示焦點在x軸上的橢圓”的概率;
(Ⅱ)求事件“方程
x2
m+1
+
y2
n+1
=1
所對應(yīng)的曲線表示焦點在x軸上的橢圓,且長軸長大于短軸長的
2
倍”的概率.

查看答案和解析>>

在自然數(shù)集N中,被3除所得余數(shù)為r的自然數(shù)組成一個“堆”,記為[r],即[r]={3k+r|k∈N},其中r=0,1,2,給出如下四個結(jié)論:
①2011∈[1];②若a∈[1],b∈[2]則a+b∈[0];③N=[0]∪[1]∪[2];④若a,b屬于同一“堆”,則a-b不屬于這一“堆”.
其中正確結(jié)論的個數(shù)(  )

查看答案和解析>>

(1)設(shè)函數(shù)g(x)=
x-1
2
(x∈R)
,且數(shù)列{cn}滿足c1=1,cn=g(cn-1)(n∈N,n>1);求數(shù)列{cn}的通項公式.
(2)設(shè)等差數(shù)列{an}、{bn}的前n項和分別為Sn和Tn,且
a3
b4+b6
+
a7
b2+b8
=
2
5
Sn
Tn
=
An+1
2n+7
,S2=6;求常數(shù)A的值及{an}的通項公式.
(3)若dn=
an(n為正奇數(shù))
cn(n為正偶數(shù))
,其中an、cn即為(1)、(2)中的數(shù)列{an}、{cn}的第n項,試求d1+d2+…+dn

查看答案和解析>>


同步練習(xí)冊答案