由y=解得: ----------2分 查看更多

 

題目列表(包括答案和解析)

解::因為,所以f(1)f(2)<0,因此f(x)在區(qū)間(1,2)上存在零點,又因為y=與y=-在(0,+)上都是增函數(shù),因此在(0,+)上是增函數(shù),所以零點個數(shù)只有一個方法2:把函數(shù)的零點個數(shù)個數(shù)問題轉(zhuǎn)化為判斷方程解的個數(shù)問題,近而轉(zhuǎn)化成判斷交點個數(shù)問題,在坐標系中畫出圖形


由圖看出顯然一個交點,因此函數(shù)的零點個數(shù)只有一個

袋中有50個大小相同的號牌,其中標著0號的有5個,標著n號的有n個(n=1,2,…9),現(xiàn)從袋中任取一球,求所取號碼的分布列,以及取得號碼為偶數(shù)的概率.

查看答案和解析>>

(14分) 已知二次函數(shù)為偶函數(shù),函數(shù)的圖象與直線y=x相切.

(1)求的解析式

(2)若函數(shù)上是單調(diào)減函數(shù),那么:

①求k的取值范圍;

②是否存在區(qū)間[m,n](m<n,使得在區(qū)間[m,n]上的值域恰好為[km,kn]?若存在,請求出區(qū)間[m,n];若不存在,請說明理由.

查看答案和解析>>

為了了解已有沙漠面積1000萬公頃的某地區(qū)沙漠面積的變化情況,環(huán)保監(jiān)測部門進入了連續(xù)4年的觀察,并將每年年底的觀察結(jié)果記錄如表甲.根據(jù)這些數(shù)據(jù)還可繪制曲線圖乙.由此預(yù)測到該地區(qū)沙漠的面積將繼續(xù)擴大.

表甲

圖乙

(1)如果不采取任何措施,那么到第m年底,該地區(qū)沙漠面積變?yōu)槎嗌俟珒A?

(2)如果第5年底后,采取引水和植樹造林等措施,使沙漠化擴大趨勢得以減緩.第6年開始的每一年年底觀察得該地區(qū)沙漠面積比上一年增加數(shù)y(公頃)分別為:a6,a7,a8,…,an,而a6,a7,a8,…,an還構(gòu)成首項a6=32,公差d=-8的遞減等差數(shù)列.當沙漠化擴大趨勢停止后(即an=0),每年改造18萬公頃沙漠,那么第n年底,該地區(qū)沙漠的面積能減少到980萬公頃?

查看答案和解析>>

(本小題滿分16分)知函數(shù)f(x)=ax3+bx2+cx+d(a、b、c、dR),且函數(shù)f(x)的圖象關(guān)于原點對稱,其圖象x=3處的切線方程為8x-y-18=0.

(1)求f(x)的解析式;

(2)是否存在區(qū)間,使得函數(shù)f(x)的定義域和值域均為?若存在,求出這樣的一個區(qū)間;若不存在,則說明理由;

(3)若數(shù)列{an}滿足:a1≥1,an+1,試比較+++…+與1的大小關(guān)系,并說明理由.

查看答案和解析>>

(本題滿分12分)

    為考察某種甲型H1N1疫苗的效果,進行動物實驗,得到如下疫苗效果的實驗列聯(lián)表:

 

感染

未感染

總計

沒服用

20

30

50

服用

x

y

50

總計

M

N

100

    設(shè)從沒服用疫苗的動物中任取兩只,感染數(shù)為從服從過疫苗的動物中任取兩只,感染數(shù)為工作人員曾計算過

   (1)求出列聯(lián)表中數(shù)據(jù)的值;

   (2)寫出的均值(不要求計算過程),并比較大小,請解釋所得出的結(jié)論的實際意義;

   (3)能夠以97.5%的把握認為這種甲型H1N1疫苗有效么?并說明理由。

        參考公式:

        參考數(shù)據(jù):

0.05

0.025

0.010

3.841

5.024

6.635

 

 

查看答案和解析>>


同步練習冊答案