(Ⅱ)由題意得: ----------4分 查看更多

 

題目列表(包括答案和解析)

(2013•韶關(guān)二模)以下四個命題
①在一次試卷分析中,從每個試室中抽取第5號考生的成績進(jìn)行統(tǒng)計,是簡單隨機抽樣;
②樣本數(shù)據(jù):3,4,5,6,7的方差為2;
③對于相關(guān)系數(shù)r,|r|越接近1,則線性相關(guān)程度越強;
④通過隨機詢問110名性別不同的行人,對過馬路是愿意走斑馬線還是愿意走人行天橋進(jìn)行抽樣調(diào)查,得到如下列聯(lián)表:

總計
走天橋 40 20 60
走斑馬線 20 30 50
總計 60 50 110
附表:
P(K2≥k) 0.05 0.010 0.001
k 3.841 6.635 10.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
可得,k2=
110×(40×30-20×20)
60×50×60×50
=7.8
,
則有99%以上的把握認(rèn)為“選擇過馬路方式與性別有關(guān)”.其中正確的命題序號是
②③④
②③④

查看答案和解析>>

(2007•楊浦區(qū)二模)(文)設(shè)F1、F2分別為橢圓C:
x2
m2
+
y2
n2
=1
(m>0,n>0且m≠n)的兩個焦點.
(1)若橢圓C上的點A(1,
3
2
)到兩個焦點的距離之和等于4,求橢圓C的方程.
(2)如果點P是(1)中所得橢圓上的任意一點,且
PF1
PF2
=0
,求△PF1F2的面積.
(3)若橢圓C具有如下性質(zhì):設(shè)M、N是橢圓C上關(guān)于原點對稱的兩點,點Q是橢圓上任意一點,且直線QM與直線QN的斜率都存在,分別記為KQM、KQN,那么KQM和KQN之積是與點Q位置無關(guān)的定值.試問:雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)是否具有類似的性質(zhì)?并證明你的結(jié)論.通過對上面問題進(jìn)一步研究,請你概括具有上述性質(zhì)的二次曲線更為一般的結(jié)論,并說明理由.

查看答案和解析>>

(文)設(shè)F1、F2分別為橢圓C:
x2
m2
+
y2
n2
=1
(m>0,n>0且m≠n)的兩個焦點.
(1)若橢圓C上的點A(1,
3
2
)到兩個焦點的距離之和等于4,求橢圓C的方程.
(2)如果點P是(1)中所得橢圓上的任意一點,且
PF1
PF2
=0
,求△PF1F2的面積.
(3)若橢圓C具有如下性質(zhì):設(shè)M、N是橢圓C上關(guān)于原點對稱的兩點,點Q是橢圓上任意一點,且直線QM與直線QN的斜率都存在,分別記為KQM、KQN,那么KQM和KQN之積是與點Q位置無關(guān)的定值.試問:雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)是否具有類似的性質(zhì)?并證明你的結(jié)論.通過對上面問題進(jìn)一步研究,請你概括具有上述性質(zhì)的二次曲線更為一般的結(jié)論,并說明理由.

查看答案和解析>>

(文)設(shè)F1、F2分別為橢圓C:(m>0,n>0且m≠n)的兩個焦點.
(1)若橢圓C上的點A(1,)到兩個焦點的距離之和等于4,求橢圓C的方程.
(2)如果點P是(1)中所得橢圓上的任意一點,且,求△PF1F2的面積.
(3)若橢圓C具有如下性質(zhì):設(shè)M、N是橢圓C上關(guān)于原點對稱的兩點,點Q是橢圓上任意一點,且直線QM與直線QN的斜率都存在,分別記為KQM、KQN,那么KQM和KQN之積是與點Q位置無關(guān)的定值.試問:雙曲線(a>0,b>0)是否具有類似的性質(zhì)?并證明你的結(jié)論.通過對上面問題進(jìn)一步研究,請你概括具有上述性質(zhì)的二次曲線更為一般的結(jié)論,并說明理由.

查看答案和解析>>

(本小題滿分14分)

如圖,四棱錐S-ABCD中,SA⊥平面ABCD,底面ABCD為直角梯形,AD∥BC,∠BAD=90 ,且BC=2AD=2,AB=4,SA=3.

(1)求證:平面SBC⊥平面SAB;

(2)若E、F分別為線段BC、SB上的一點(端點除外),滿足.(

①求證:對于任意的,恒有SC∥平面AEF;

②是否存在,使得△AEF為直角三角形,若存在,求出所有符合條件的值;若不存在,說明理由.

 

查看答案和解析>>


同步練習(xí)冊答案