另外:Sn= 查看更多

 

題目列表(包括答案和解析)

設數(shù)列{an}的前n項和為Sn,數(shù)學公式
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)若q∈N*,是否存在q的某些取值,使數(shù)列{an}中某一項能表示為另外三項之和?若能求出q的全部取值集合,若不能說明理由.
(3)若q∈R,是否存在q∈[3,+∞),使數(shù)列{an}中,某一項可以表示為另外三項之和?若存在指出q的一個取值,若不存在,說明理由.

查看答案和解析>>

設數(shù)列{an}的前n項和為Sn,
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)若q∈N*,是否存在q的某些取值,使數(shù)列{an}中某一項能表示為另外三項之和?若能求出q的全部取值集合,若不能說明理由.
(3)若q∈R,是否存在q∈[3,+∞),使數(shù)列{an}中,某一項可以表示為另外三項之和?若存在指出q的一個取值,若不存在,說明理由.

查看答案和解析>>

設數(shù)列{an}的前n項和為SnSn=
a1(1-qn)1-q
(a1,q∈R,a1≠0,q≠1)

(1)求證:數(shù)列{an}是等比數(shù)列;
(2)若q∈N*,是否存在q的某些取值,使數(shù)列{an}中某一項能表示為另外三項之和?若能求出q的全部取值集合,若不能說明理由.
(3)若q∈R,是否存在q∈[3,+∞),使數(shù)列{an}中,某一項可以表示為另外三項之和?若存在指出q的一個取值,若不存在,說明理由.

查看答案和解析>>


同步練習冊答案