設等差數(shù)列的公差為d.則 ( I ) 查看更多

 

題目列表(包括答案和解析)

設數(shù)列{an}是公差為d的等差數(shù)列,其前n項和為Sn
(1)已知a1=1,d=2,
(i)求當n∈N*時,的最小值;
(ii)當n∈N*時,求證:;
(2)是否存在實數(shù)a1,使得對任意正整數(shù)n,關于m的不等式am≥n的最小正整數(shù)解為3n﹣2?若存在,則求a1的取值范圍;若不存在,則說明理由.

查看答案和解析>>

若數(shù)列{bn}:對于n∈N*,都有bn+2-bn=d(常數(shù)),則稱數(shù)列{bn}是公差為d的準等差數(shù)列.如:若cn=是公差為8的準等差數(shù)列.
(I)設數(shù)列{an}滿足:a1=a,對于n∈N*,都有an+an+1=2n.求證:{an}為準等差數(shù)列,并求其通項公式:
(Ⅱ)設(I)中的數(shù)列{an}的前n項和為Sn,試研究:是否存在實數(shù)a,使得數(shù)列Sn有連續(xù)的兩項都等于50.若存在,請求出a的值;若不存在,請說明理由.

查看答案和解析>>

F是橢圓的右焦點,且橢圓上至少有21個不同的點Pi(i=1,2,3,…),使|FP1|,|FP2|,|FP3|,…組成公差為d的等差數(shù)列,則d的取值范圍為          .

查看答案和解析>>

設F是橢圓的右焦點,且橢圓上至少有21個不同的點Pi(i=1,2,3,…),使|FP1|,|FP2|,|FP3|,…組成公差為d的等差數(shù)列,則d的取值范圍為   

查看答案和解析>>

設F是橢圓數(shù)學公式的右焦點,且橢圓上至少有21個不同的點Pi(i=1,2,3,…),使|FP1|,|FP2|,|FP3|,…組成公差為d的等差數(shù)列,則d的取值范圍為________.

查看答案和解析>>


同步練習冊答案