題目列表(包括答案和解析)
已知函數(shù)f(x)(x∈R)滿(mǎn)足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的實(shí)數(shù)x只有一個(gè).
(1)求函數(shù)f(x)的表達(dá)式;
(2)若數(shù)列{an}滿(mǎn)足a1=,an+1=f(an),bn=-1,n∈N*,證明數(shù)列{bn}是等比數(shù)列,并求出{bn}的通項(xiàng)公式;
(3)在(2)的條件下,證明:a1b1+a2b2+…+anbn<1(n∈N*).
【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.
由f(x)=2x只有一解,即=2x,
也就是2ax2-2(1+b)x=0(a≠0)只有一解,
∴b=-1.∴a=-1.故f(x)=.…………………………………………4分
(2)an+1=f(an)=(n∈N*),bn=-1, ∴===,
∴{bn}為等比數(shù)列,q=.又∵a1=,∴b1=-1=,
bn=b1qn-1=n-1=n(n∈N*).……………………………9分
(3)證明:∵anbn=an=1-an=1-=,
∴a1b1+a2b2+…+anbn=++…+<++…+
==1-<1(n∈N*).
如圖,是△的重心,、分別是邊、上的動(dòng)點(diǎn),且、、三點(diǎn)共線(xiàn).
(1)設(shè),將用、、表示;
(2)設(shè),,證明:是定值;
(3)記△與△的面積分別為、.求的取值范圍.
(提示:
【解析】第一問(wèn)中利用(1)
第二問(wèn)中,由(1),得;①
另一方面,∵是△的重心,
∴
而、不共線(xiàn),∴由①、②,得
第三問(wèn)中,
由點(diǎn)、的定義知,,
且時(shí),;時(shí),.此時(shí),均有.
時(shí),.此時(shí),均有.
以下證明:,結(jié)合作差法得到。
解:(1)
.
(2)一方面,由(1),得;①
另一方面,∵是△的重心,
∴. ②
而、不共線(xiàn),∴由①、②,得
解之,得,∴(定值).
(3).
由點(diǎn)、的定義知,,
且時(shí),;時(shí),.此時(shí),均有.
時(shí),.此時(shí),均有.
以下證明:.(法一)由(2)知,
∵,∴.
∵,∴.
∴的取值范圍
π | 4 |
x |
2 |
π |
6 |
1 |
2 |
1 |
2 |
A、(1,1.5) |
B、(1.5,2) |
C、(2,3) |
D、無(wú)法確定 |
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com