解:(1) 由累差法易得an =,-------- 5分 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)(x∈R)滿(mǎn)足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的實(shí)數(shù)x只有一個(gè).

(1)求函數(shù)f(x)的表達(dá)式;

(2)若數(shù)列{an}滿(mǎn)足a1,an+1=f(an),bn-1,n∈N*,證明數(shù)列{bn}是等比數(shù)列,并求出{bn}的通項(xiàng)公式;

(3)在(2)的條件下,證明:a1b1+a2b2+…+anbn<1(n∈N*).

【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.

由f(x)=2x只有一解,即=2x,

也就是2ax2-2(1+b)x=0(a≠0)只有一解,

∴b=-1.∴a=-1.故f(x)=.…………………………………………4分

(2)an+1=f(an)=(n∈N*),bn-1, ∴,

∴{bn}為等比數(shù)列,q=.又∵a1,∴b1-1=,

bn=b1qn-1n-1n(n∈N*).……………………………9分

(3)證明:∵anbn=an=1-an=1-,

∴a1b1+a2b2+…+anbn+…+<+…+

=1-<1(n∈N*).

 

查看答案和解析>>

如圖,是△的重心,、分別是邊上的動(dòng)點(diǎn),且、、三點(diǎn)共線(xiàn).

(1)設(shè),將、、表示;

(2)設(shè),,證明:是定值;

(3)記△與△的面積分別為、.求的取值范圍.

(提示:

【解析】第一問(wèn)中利用(1)

第二問(wèn)中,由(1),得;①

另一方面,∵是△的重心,

、不共線(xiàn),∴由①、②,得

第三問(wèn)中,

由點(diǎn)的定義知,

時(shí),;時(shí),.此時(shí),均有

  時(shí),.此時(shí),均有

以下證明:,結(jié)合作差法得到。

解:(1)

(2)一方面,由(1),得;①

另一方面,∵是△的重心,

.  ②

、不共線(xiàn),∴由①、②,得 

解之,得,∴(定值).

(3)

由點(diǎn)、的定義知,

時(shí),;時(shí),.此時(shí),均有

  時(shí),.此時(shí),均有

以下證明:.(法一)由(2)知,

,∴

,∴

的取值范圍

 

查看答案和解析>>

已知函數(shù)y=sin(2x+
π4
)+1.
(1)用“五點(diǎn)法”畫(huà)出函數(shù)的草圖;
(2)函數(shù)圖象可由y=sinx的圖象怎樣變換得到?

查看答案和解析>>

精英家教網(wǎng)已知函數(shù)f(x)=3sin(
x
2
+
π
6
)+3

(1)用五點(diǎn)法畫(huà)出它在一個(gè)周期內(nèi)的閉區(qū)間上的圖象;
(2)求出f(x)的周期、單調(diào)增區(qū)間;
(3)說(shuō)明此函數(shù)圖象可由y=sinx的圖象經(jīng)怎樣的變換得到.

查看答案和解析>>

設(shè)f(x)=(
1
2
)x-x+1
,用二分法求方程(
1
2
)
x
-x+1=0
在(1,3)內(nèi)近似解的過(guò)程中,f(1)>0,f(1.5)<0,f(2)<0,f(3)<0,則方程的根落在區(qū)間(  )
A、(1,1.5)
B、(1.5,2)
C、(2,3)
D、無(wú)法確定

查看答案和解析>>


同步練習(xí)冊(cè)答案