題目列表(包括答案和解析)
(1)求恰有一件不合格的概率;
(2)求至少有兩件不合格的概率.
分析:恰有一件不合格分三種情況,可以看成由三個基本事件構成的,三個事件之間又是相互獨立的,至少有兩件不合格,正面考慮情況復雜,可考慮此事件的對立事件.
為了解某班學生喜愛打羽毛球是否與性別有關,對本班50人進行了問卷調查得到了如下的列聯(lián)表:
|
喜愛打羽毛球 |
不喜愛打羽毛球 |
合計 |
男生 |
|
5 |
|
女生 |
10 |
|
|
|
|
|
50 |
已知在全部50人中隨機抽取1人抽到不喜愛打羽毛球的學生的概率
(1)請將上面的列聯(lián)表補充完整;
(2)是否有99.5%的把握認為喜愛打羽毛球與性別有關?說明你的理由;
(3)已知喜愛打羽毛球的10位女生中,還喜歡打籃球,還喜歡打乒乓球,還喜歡踢足球,現(xiàn)在從喜歡打籃球、喜歡打乒乓球、喜歡踢足球的6位女生中各選出1名進行其他方面的調查,求女生和不全被選中的概率.下面的臨界值表供參考:
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(參考公式:其中.)
【解析】第一問利用數(shù)據(jù)寫出列聯(lián)表
第二問利用公式計算的得到結論。
第三問中,從6位女生中選出喜歡打籃球、喜歡打乒乓球、喜歡踢足球的各1名,其一切可能的結果組成的基本事件如下:
, ,
基本事件的總數(shù)為8
用表示“不全被選中”這一事件,則其對立事件表示“全被選中”這一事件,由于由 2個基本事件由對立事件的概率公式得
解:(1) 列聯(lián)表補充如下:
|
喜愛打羽毛球 |
不喜愛打羽毛球 |
合計 |
男生 |
20 |
5 |
25 |
女生 |
10 |
15 |
25 |
合計 |
30 |
20 |
50 |
(2)∵
∴有99.5%的把握認為喜愛打籃球與性別有關
(3)從6位女生中選出喜歡打籃球、喜歡打乒乓球、喜歡踢足球的各1名,其一切可能的結果組成的基本事件如下:
, ,
基本事件的總數(shù)為8,
用表示“不全被選中”這一事件,則其對立事件表示“全被選中”這一事件,由于由 2個基本事件由對立事件的概率公式得.
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com