因?yàn)閒(x)的最大值為的最大值為1.則 查看更多

 

題目列表(包括答案和解析)

解析:依題意得f(x)的圖象關(guān)于直線x=1對(duì)稱,f(x+1)=-f(x-1),f(x+2)=-f(x),f(x+4)=-f(x+2)=f(x),即函數(shù)f(x)是以4為周期的函數(shù).由f(x)在[3,5]上是增函數(shù)與f(x)的圖象關(guān)于直線x=1對(duì)稱得,f(x)在[-3,-1]上是減函數(shù).又函數(shù)f(x)是以4為周期的函數(shù),因此f(x)在[1,3]上是減函數(shù),f(x)在[1,3]上的最大值是f(1),最小值是f(3).

答案:A

查看答案和解析>>

已知函數(shù)f(x)=ex-ax,其中a>0.

(1)若對(duì)一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

當(dāng)時(shí)單調(diào)遞減;當(dāng)時(shí)單調(diào)遞增,故當(dāng)時(shí),取最小值

于是對(duì)一切恒成立,當(dāng)且僅當(dāng).       、

當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.

故當(dāng)時(shí),取最大值.因此,當(dāng)且僅當(dāng)時(shí),①式成立.

綜上所述,的取值集合為.

(Ⅱ)由題意知,

,則.當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.故當(dāng),

從而

所以因?yàn)楹瘮?shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

【點(diǎn)評(píng)】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運(yùn)算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出取最小值對(duì)一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設(shè)存在的情況下進(jìn)行推理,然后把問題歸結(jié)為一個(gè)方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個(gè)函數(shù)的性質(zhì)進(jìn)行分析判斷.

 

查看答案和解析>>

“活水圍網(wǎng)”養(yǎng)魚技術(shù)具有養(yǎng)殖密度高、經(jīng)濟(jì)效益好的特點(diǎn).研究表明:“活水圍網(wǎng)”養(yǎng)魚時(shí),某種魚在一定的條件下,每尾魚的平均生長速度v(單位:千克/年)是養(yǎng)殖密度x(單位:尾/立方米)的函數(shù).當(dāng)x不超過4(尾/立方米)時(shí),v的值為2(千克/年);當(dāng)4≤x≤20時(shí),v是x的一次函數(shù);當(dāng)x達(dá)到20(尾/立方米)時(shí),因缺氧等原因,v的值為0(千克/年).
(1)當(dāng)0<x≤20時(shí),求函數(shù)v(x)的表達(dá)式;
(2)當(dāng)養(yǎng)殖密度x為多大時(shí),魚的年生長量(單位:千克/立方米)f(x)=x•v(x)可以達(dá)到最大,并求出最大值.

查看答案和解析>>

(2013•松江區(qū)一模)“活水圍網(wǎng)”養(yǎng)魚技術(shù)具有養(yǎng)殖密度高、經(jīng)濟(jì)效益好的特點(diǎn).研究表明:“活水圍網(wǎng)”養(yǎng)魚時(shí),某種魚在一定的條件下,每尾魚的平均生長速度v(單位:千克/年)是養(yǎng)殖密度x(單位:尾/立方米)的函數(shù).當(dāng)x不超過4(尾/立方米)時(shí),v的值為2(千克/年);當(dāng)4≤x≤20時(shí),v是x的一次函數(shù);當(dāng)x達(dá)到20(尾/立方米)時(shí),因缺氧等原因,v的值為0(千克/年).
(1)當(dāng)0<x≤20時(shí),求函數(shù)v(x)的表達(dá)式;
(2)當(dāng)養(yǎng)殖密度x為多大時(shí),魚的年生長量(單位:千克/立方米)f(x)=x•v(x)可以達(dá)到最大,并求出最大值.

查看答案和解析>>

在淘寶網(wǎng)上,某店鋪專賣當(dāng)?shù)啬撤N特產(chǎn).由以往的經(jīng)驗(yàn)表明,不考慮其他因素,該特產(chǎn)每日的銷售量y(單位:千克)與銷售價(jià)格x(單位:元/千克,1<x≤5)滿足:當(dāng)1<x≤3時(shí),數(shù)學(xué)公式,(a,b為常數(shù));當(dāng)3<x≤5時(shí),y=-70x+490.已知當(dāng)銷售價(jià)格為2元/千克時(shí),每日可售出該特產(chǎn)700千克;當(dāng)銷售價(jià)格為3元/千克時(shí),每日可售出150千克.
(1)求a,b的值,并確定y關(guān)于x的函數(shù)解析式;
(2)若該特產(chǎn)的銷售成本為1元/千克,試確定銷售價(jià)格x的值,使店鋪每日銷售該特產(chǎn)所獲利潤f(x)最大(x精確但0.01元/千克).

查看答案和解析>>


同步練習(xí)冊(cè)答案