.即函數(shù).由函數(shù)y=f(x)的圖象關(guān)于直線x=-對稱得.x∈[-π,-]時.函數(shù)f(x)=-sinx. 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.

(1)將函數(shù)y=f(x)圖象向右平移一個單位即可得到函數(shù)y=φ(x)的圖象,試寫出y=φ(x)的解析式及值域;

(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;

(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

設(shè)函數(shù)f(x)a2x2(a0),g(x)blnx

(1)將函數(shù)yf(x)圖象向右平移一個單位即可得到函數(shù)yφ(x)的圖象,試寫出yφ(x)的解析式及值域;

(2)關(guān)于x的不等式(x1)2f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;

(3)對于函數(shù)f(x)g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)kxmg(x)kxm都成立,則稱直線ykxm為函數(shù)f(x)g(x)的“分界線”.設(shè),be,試探究f(x)g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

對于函數(shù)f(x)=2sin(2x+)給出下列結(jié)論,其中正確結(jié)論的個數(shù)為

①圖象關(guān)于原點成中心對稱;

②圖象關(guān)于直線x=成軸對稱;

③圖象可由函數(shù)y=2sin2x的圖象向左平移個單位得到;

④圖象向左平移個單位,即得到函數(shù)y=2cos2x的圖象.

[  ]

A.0

B.1

C.2

D.3

查看答案和解析>>

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.

(Ⅰ)將函數(shù)y=f(x)圖象向右平移一個單位即可得到函數(shù)y=φ(x)的圖象,試寫出y=φ(x)的解析式及值域;

(Ⅱ)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;

(Ⅲ)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>


同步練習冊答案