(2) 由正弦定理:. ∴ . 查看更多

 

題目列表(包括答案和解析)

由正弦定理知:在△ABC中,a∶b∶c=sinA∶sinB∶sinC.若A=30°,B=60°,則a∶b∶c=

[  ]
A.

1∶∶2

B.

1∶2∶4

C.

2∶3∶4

D.

1∶∶2

查看答案和解析>>

由正弦定理可知:在△ABC中,a=2RsinA,b=2RsinB,c=2RsinC,其中R是△ABC外接圓的半徑.求證:acosB+bcosA=2RsinC

查看答案和解析>>

正弦定理在解三角形中的作用:

(1)如果已知三角形的任意兩個(gè)______與一_______,由三角形________,可以計(jì)算出三角形的另一________,并由正弦定理計(jì)算出三角形的另_______

(2)如果已知三角形的任意________與基中一邊的______,應(yīng)用正弦定理,可以計(jì)算出另一邊的對(duì)角的_______,進(jìn)而確定這個(gè)_______和三角形其他的_______

查看答案和解析>>

正弦定理在解三角形中的作用:

(1)如果已知三角形的任意兩個(gè)______與一_______,由三角形________,可以計(jì)算出三角形的另一________,并由正弦定理計(jì)算出三角形的另_______.

(2)如果已知三角形的任意________與基中一邊的______,應(yīng)用正弦定理,可以計(jì)算出另一邊的對(duì)角的_______,進(jìn)而確定這個(gè)_______和三角形其他的_______.

查看答案和解析>>

精英家教網(wǎng)在正四棱柱ABCD-A1B1C1D1中,E,F(xiàn)分別是C1D1,C1B1的中點(diǎn),G為CC1上任一點(diǎn),EC與底面ABCD所成角的正切值是4.
(Ⅰ)求證AG⊥EF;
(Ⅱ)確定點(diǎn)G的位置,使AG⊥面CEF,并說明理由;
(Ⅲ)求二面角F-CE-C1的余弦值.

查看答案和解析>>


同步練習(xí)冊答案