題目列表(包括答案和解析)
設(shè)f (x)=sin 2x+(sin x-cos x)(sin x+cos x),其中x∈R.
(Ⅰ) 該函數(shù)的圖象可由 的圖象經(jīng)過(guò)怎樣的平移和伸縮變換得到?
(Ⅱ)若f (θ)=,其中,求cos(θ+)的值;
【解析】第一問(wèn)中,
即變換分為三步,①把函數(shù)的圖象向右平移,得到函數(shù)的圖象;
②令所得的圖象上各點(diǎn)的縱坐標(biāo)不變,把橫坐標(biāo)縮短到原來(lái)的倍,得到函數(shù)的圖象;
③令所得的圖象上各點(diǎn)的橫坐標(biāo)不變,把縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,得到函數(shù)的圖象;
第二問(wèn)中因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220027495699378_ST.files/image008.png">,所以,則,又 ,,從而
進(jìn)而得到結(jié)論。
(Ⅰ) 解:
即!3分
變換的步驟是:
①把函數(shù)的圖象向右平移,得到函數(shù)的圖象;
②令所得的圖象上各點(diǎn)的縱坐標(biāo)不變,把橫坐標(biāo)縮短到原來(lái)的倍,得到函數(shù)的圖象;
③令所得的圖象上各點(diǎn)的橫坐標(biāo)不變,把縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,得到函數(shù)的圖象;…………………………………3分
(Ⅱ) 解:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912192026514838/SYS201207091220027495699378_ST.files/image008.png">,所以,則,又 ,,從而……2分
(1)當(dāng)時(shí),;…………2分
(2)當(dāng)時(shí);
函數(shù)f(x)=Asin(wx+),(A)>0,w>0,||<)的一系列對(duì)應(yīng)值如下表:
(1)根據(jù)表中數(shù)據(jù)求出f(x)的解析式;
(2)指出函數(shù)f(x)的圖象是由函數(shù)y=sinx(x∈R)的圖象經(jīng)過(guò)怎樣的變化而得到的;
(3)令g(x)=f(x+)-a,若g(x)在x∈[-,]時(shí)有兩個(gè)零點(diǎn),求a的取值范圍.
已知定義在(-1,1)上的函數(shù)f(x)滿足f=1,且對(duì)x、y∈(-1,1)時(shí),有f(x)-f(y)=.
(1)判斷f(x)在(-1,1)上的奇偶性,并證明之;
(2)令x1=,xn+1=,求數(shù)列{f(xn)}的通項(xiàng)公式;
(3)設(shè)Tn為數(shù)列{}的前n項(xiàng)和,問(wèn)是否存在正整數(shù)m,使得對(duì)任意的n∈N*,有Tn<成立?若存在,求出m的最小值;若不存在,則說(shuō)明理由.
已知數(shù)列{an}中,,點(diǎn)(n,2an+1-an)在直線y=x上,其中n∈N*.
(1)令bn=an+1-an-1,求證數(shù)列{bn}是等比數(shù)列
(2)求數(shù)列{an}的通項(xiàng);
(3)設(shè)Sn、Tn分別為數(shù)列{an}、{bn}的前n項(xiàng)和,是否存在實(shí)數(shù)λ,使得數(shù)列為等差數(shù)列?若存在,試求出λ.若不存在,則說(shuō)明理由.
已知數(shù)列{an}中,,點(diǎn)(n,2an+1-an)在直線y=x上,其中n=1,2,3….
(1)令bn=an+1-an-1,求證:數(shù)列{bn}是等比數(shù)列;
(2)求數(shù)列{an}通項(xiàng)公式;
(3)設(shè)Sn、Tn分別為數(shù)列{an}、{bn}的前n項(xiàng)和,是否存在實(shí)數(shù)λ,使得數(shù)列為等差數(shù)列?若存在,試求出λ.若不存在,則說(shuō)明理由.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com