(2)當(dāng)且僅當(dāng)點(diǎn)在線段上時.為銳角三角. 查看更多

 

題目列表(包括答案和解析)

,滿足僅在點(diǎn)處取得最小值,則的取值范圍是(   )

A.(-1,2)          B.(-2,4)          C.(-4,0]          D.(-4,2)

   

查看答案和解析>>

在平面直角坐標(biāo)系中,對其中任何一向量X=(x1,x2),定義范數(shù)||X||,它滿足以下性質(zhì):(1)||X||≥0,當(dāng)且僅當(dāng)X為零向量時,不等式取等號;(2)對任意的實數(shù)λ,||λX||=|λ|•||X||(注:此處點(diǎn)乘號為普通的乘號);(3)||X||+||Y||≥||X+Y||.應(yīng)用類比的方法,我們可以給出空間直角坐標(biāo)系下范數(shù)的定義,現(xiàn)有空間向量X=(x1,x2,x3),下面給出的幾個表達(dá)式中,可能表示向量X的范數(shù)的是
 
(把所有正確答案的序號都填上)
(1)
x12
+2x22+x32(2)
2x2-x22+x32
 (3)
x12+x22+x32+2
  (4)
x12+x22+x32

查看答案和解析>>

已知雙曲線C的兩條漸近線都過原點(diǎn),且都以點(diǎn)A(
2
,0)為圓心,1為半徑的圓相切,雙曲線的一個頂點(diǎn)A′與A點(diǎn)關(guān)于直線y=x對稱.
(1)求雙曲線C的方程;
(2)設(shè)直線l過點(diǎn)A,斜率為k,當(dāng)0<k<1時,雙曲線C的上支上有且僅有一點(diǎn)B到直線l的距離為
2
,試求k的值及此時B點(diǎn)的坐標(biāo).

查看答案和解析>>

(2008•普陀區(qū)二模)已知點(diǎn)E,F(xiàn)的坐標(biāo)分別是(-2,0)、(2,0),直線EP,F(xiàn)P相交于點(diǎn)P,且它們的斜率之積為-
1
4

(1)求證:點(diǎn)P的軌跡在橢圓C:
x2
4
+y2=1
上;
(2)設(shè)過原點(diǎn)O的直線AB交(1)題中的橢圓C于點(diǎn)A、B,定點(diǎn)M的坐標(biāo)為(1,
1
2
)
,試求△MAB面積的最大值,并求此時直線AB的斜率kAB;
(3)某同學(xué)由(2)題結(jié)論為特例作推廣,得到如下猜想:
設(shè)點(diǎn)M(a,b)(ab≠0)為橢圓C:
x2
4
+y2=1
內(nèi)一點(diǎn),過橢圓C中心的直線AB與橢圓分別交于A、B兩點(diǎn).則當(dāng)且僅當(dāng)kOM=-kAB時,△MAB的面積取得最大值.
問:此猜想是否正確?若正確,試證明之;若不正確,請說明理由.

查看答案和解析>>

精英家教網(wǎng)(理科做)如圖所示已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面ABCD且PA=1.建立適當(dāng)?shù)目臻g坐標(biāo)系,利用空間向量求解下列問題:
(1)求點(diǎn)P、B、D的坐標(biāo);
(2)當(dāng)實數(shù)a在什么范圍內(nèi)取值時,BC邊上存在點(diǎn)Q,使得PQ⊥QD;
(3)當(dāng)BC邊上有且僅有一個Q點(diǎn),使得時PQ⊥QD,求二面角Q-PD-A的余弦值.

查看答案和解析>>


同步練習(xí)冊答案