解 事件和互斥 查看更多

 

題目列表(包括答案和解析)

甲、乙兩人獨(dú)立地破譯1個(gè)密碼,他們能譯出密碼的概率分別為,求(1)恰有1人譯出密碼的概率;

(2)若達(dá)到譯出密碼的概率為,至少需要多少個(gè)乙這樣的人?

【解析】第一問中,考慮兩種情況,是甲乙中的那個(gè)人譯出密碼,然后利用互斥事件概率公式相加得到。

第二問中,利用間接法n個(gè)乙這樣的人都譯不出密碼的概率為.可以得到結(jié)論。

解:設(shè)“甲譯出密碼”為事件A;“乙譯出密碼”為事件B,則

(1) ………………5分

(2)n個(gè)乙這樣的人都譯不出密碼的概率為

.解得.

達(dá)到譯出密碼的概率為99/100,至少需要17人.

 

查看答案和解析>>

某花店每天以每枝5元的價(jià)格從農(nóng)場購進(jìn)若干枝玫瑰花,然后以每枝10元的價(jià)格出售。如果當(dāng)天賣不完,剩下的玫瑰花做垃圾處理。

(Ⅰ)若花店一天購進(jìn)17枝玫瑰花,求當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式。

(Ⅱ)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:

日需求量n

14

15

16

17

18

19

20

頻數(shù)

10

20

16

16

15

13

10

(i)假設(shè)花店在這100天內(nèi)每天購進(jìn)17枝玫瑰花,求這100天的日利潤(單位:元)的平均數(shù);

(ii)若花店一天購進(jìn)17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤不少于75元的概率.

【命題意圖】本題主要考查給出樣本頻數(shù)分別表求樣本的均值、將頻率做概率求互斥事件的和概率,是簡單題.

【解析】(Ⅰ)當(dāng)日需求量時(shí),利潤=85;

當(dāng)日需求量時(shí),利潤,

關(guān)于的解析式為

(Ⅱ)(i)這100天中有10天的日利潤為55元,20天的日利潤為65元,16天的日利潤為75元,54天的日利潤為85元,所以這100天的平均利潤為

=76.4;

(ii)利潤不低于75元當(dāng)且僅當(dāng)日需求不少于16枝,故當(dāng)天的利潤不少于75元的概率為

 

查看答案和解析>>

某中學(xué)研究性學(xué)習(xí)小組,為了考察高中學(xué)生的作文水平與愛看課外書的關(guān)系,在本校高三年級(jí)隨機(jī)調(diào)查了 50名學(xué)生.調(diào)査結(jié)果表明:在愛看課外書的25人中有18人作文水平好,另7人作文水平一般;在不愛看課外書的25人中有6人作文水平好,另19人作文水平一般.

(Ⅰ)試根據(jù)以上數(shù)據(jù)完成以下2×2列聯(lián)表,并運(yùn)用獨(dú)立性檢驗(yàn)思想,指出有多大把握認(rèn)為中學(xué)生的作文水平與愛看課外書有關(guān)系?

高中學(xué)生的作文水平與愛看課外書的2×2列聯(lián)表

 

愛看課外書

不愛看課外書

總計(jì)

作文水平好

 

 

 

作文水平一般

 

 

 

總計(jì)

 

 

 

(Ⅱ)將其中某5名愛看課外書且作文水平好的學(xué)生分別編號(hào)為1、2、3、4、5,某5名愛看課外書且作文水平一般的學(xué)生也分別編號(hào)為1、2、3、4、5,從這兩組學(xué)生中各任選1人進(jìn)行學(xué)習(xí)交流,求被選取的兩名學(xué)生的編號(hào)之和為3的倍數(shù)或4的倍數(shù)的概率.

參考公式:,其中.

參考數(shù)據(jù):

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

【解析】本試題主要考查了古典概型和列聯(lián)表中獨(dú)立性檢驗(yàn)的運(yùn)用。結(jié)合公式為判定兩個(gè)分類變量的相關(guān)性,

第二問中,確定

結(jié)合互斥事件的概率求解得到。

解:因?yàn)?×2列聯(lián)表如下

 

愛看課外書

不愛看課外書

總計(jì)

作文水平好

 18

 6

 24

作文水平一般

 7

 19

 26

總計(jì)

 25

 25

 50

 

查看答案和解析>>


同步練習(xí)冊(cè)答案