19.設(shè)數(shù)列 記 (Ⅰ)求a2.a3, (Ⅱ)判斷數(shù)列是否為等比數(shù)列.并證明你的結(jié)論, (Ⅲ)求 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

某次國(guó)際象棋友誼賽在中國(guó)隊(duì)和烏克蘭隊(duì)之間舉行,比賽采用積分制,比賽規(guī)則規(guī)定贏一局得2分,平一局得1分,輸一局得0分,根據(jù)以往戰(zhàn)況,每局中國(guó)隊(duì)贏的概率為,烏克蘭隊(duì)贏的概率為,且每局比賽輸贏互不影響.若中國(guó)隊(duì)第n局的得分記為,令.

(1)求的概率;

(2)若規(guī)定:當(dāng)其中一方的積分達(dá)到或超過4分時(shí),比賽不再繼續(xù),否則,繼續(xù)進(jìn)行.設(shè)隨機(jī)變量表示此次比賽共進(jìn)行的局?jǐn)?shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>


(本小題滿分12分)
某農(nóng)場(chǎng)計(jì)劃種植某種新作物,為此對(duì)這種作物的兩個(gè)品種(分別稱為品種甲和品種乙)進(jìn)行田間試驗(yàn).選取兩大塊地,每大塊地分成n小塊地,在總共2n小塊地中,隨機(jī)選n小塊地種植品種甲,另外n小塊地種植品種乙.
(I)假設(shè)n=4,在第一大塊地中,種植品種甲的小塊地的數(shù)目記為X,求X的分布列和數(shù)學(xué)期望;
(II)試驗(yàn)時(shí)每大塊地分成8小塊,即n=8,試驗(yàn)結(jié)束后得到品種甲和品種乙在個(gè)小塊地上的每公頃產(chǎn)量(單位:kg/hm2)如下表:

分別求品種甲和品種乙的每公頃產(chǎn)量的樣本平均數(shù)和樣本方差;根據(jù)試驗(yàn)結(jié)果,你認(rèn)為應(yīng)該種植哪一品種?
附:樣本數(shù)據(jù)x1,x2,…,xa的樣本方差,其中為樣本平均數(shù).

查看答案和解析>>

(本小題滿分12分)
某電視臺(tái)擬舉行“團(tuán)隊(duì)共享”沖關(guān)比賽,其規(guī)則如下:比賽共設(shè)有“常識(shí)關(guān)”和“創(chuàng)新關(guān)”兩關(guān),每個(gè)團(tuán)隊(duì)共兩人,每人各沖一關(guān),“常識(shí)關(guān)”中有2道不同必答題,“創(chuàng)新關(guān)”中有3道不同必答題;如果“常識(shí)關(guān)”中的2道題都答對(duì),則沖“常識(shí)關(guān)”成功且該團(tuán)隊(duì)獲得單項(xiàng)獎(jiǎng)勵(lì)900元,否則無獎(jiǎng)勵(lì);如果“創(chuàng)新關(guān)”中的3道題至少有2道題答對(duì),則沖“創(chuàng)新關(guān)”成功且該團(tuán)隊(duì)獲得單項(xiàng)獎(jiǎng)勵(lì)1800元,否則無獎(jiǎng)勵(lì).現(xiàn)某團(tuán)隊(duì)中甲沖擊“常識(shí)關(guān)”,乙沖擊“創(chuàng)新關(guān)”,已知甲回答“常識(shí)關(guān)”中每道題正確的概率都為,乙回答“創(chuàng)新關(guān)”中每道題正確的概率都為,且兩關(guān)之間互不影響,每道題回答正確與否相互獨(dú)立.
(I)求此沖關(guān)團(tuán)隊(duì)在這5道必答題中只有2道回答正確且沒有獲得任何獎(jiǎng)勵(lì)的概率;
(Ⅱ)記此沖關(guān)團(tuán)隊(duì)獲得的獎(jiǎng)勵(lì)總金額為隨機(jī)變量,求的分布列和數(shù)學(xué)期望

查看答案和解析>>

(本小題滿分12分)

假設(shè)某班級(jí)教室共有4扇窗戶,在每天上午第三節(jié)課上課預(yù)備鈴聲響起時(shí),每扇窗戶或被敞開或被關(guān)閉,且概率均為0.5,記此時(shí)教室里敞開的窗戶個(gè)數(shù)為.  

(1)求的分布列,以及的數(shù)學(xué)期望;

(2)若此時(shí)教室里有兩扇或兩扇以上的窗戶被關(guān)閉,班長(zhǎng)就會(huì)將關(guān)閉的窗戶全部敞開,否則維持原狀不變.記每天上午第三節(jié)課上課時(shí)該教室里敞開的窗戶個(gè)數(shù)為,求的數(shù)學(xué)期望.

 

查看答案和解析>>

(本小題滿分12分)

某電視臺(tái)擬舉行“團(tuán)隊(duì)共享”沖關(guān)比賽,其規(guī)則如下:比賽共設(shè)有“常識(shí)關(guān)”和“創(chuàng)新關(guān)”兩關(guān),每個(gè)團(tuán)隊(duì)共兩人,每人各沖一關(guān),“常識(shí)關(guān)”中有2道不同必答題,“創(chuàng)新關(guān)”中有3道不同必答題;如果“常識(shí)關(guān)”中的2道題都答對(duì),則沖“常識(shí)關(guān)”成功且該團(tuán)隊(duì)獲得單項(xiàng)獎(jiǎng)勵(lì)900元,否則無獎(jiǎng)勵(lì);如果“創(chuàng)新關(guān)”中的3道題至少有2道題答對(duì),則沖“創(chuàng)新關(guān)”成功且該團(tuán)隊(duì)獲得單項(xiàng)獎(jiǎng)勵(lì)1800元,否則無獎(jiǎng)勵(lì).現(xiàn)某團(tuán)隊(duì)中甲沖擊“常識(shí)關(guān)”,乙沖擊“創(chuàng)新關(guān)”,已知甲回答“常識(shí)關(guān)”中每道題正確的概率都為,乙回答“創(chuàng)新關(guān)”中每道題正確的概率都為,且兩關(guān)之間互不影響,每道題回答正確與否相互獨(dú)立.

(I)求此沖關(guān)團(tuán)隊(duì)在這5道必答題中只有2道回答正確且沒有獲得任何獎(jiǎng)勵(lì)的概率;

(Ⅱ)記此沖關(guān)團(tuán)隊(duì)獲得的獎(jiǎng)勵(lì)總金額為隨機(jī)變量,求的分布列和數(shù)學(xué)期望

 

 

查看答案和解析>>

 

一、選擇題(本大題共8小題,每小題5分,共40分)

1―5:CBCBD  6―10:DCAA

二、填空題(本大題共6小題,每小題5分,共30分)

9.   10.   11.15  12.(1,e) e  13.②③  14.

三、解答題(本大題共6小題,共80分)

15.(共13分)

解:(I) 令,解得

所以函數(shù)的單調(diào)遞減區(qū)間為

(II)因?yàn)?/p>

所以

因?yàn)樵冢ǎ?,3)上,所以在[-1,2]上單調(diào)遞增,又由于在

[-2,-1]上單調(diào)遞減,因此和分別是在區(qū)間[-2,2]上的最大值和

最小值.

于是有,解得

故  因此

即函數(shù)在區(qū)間[-2,2]上的最小值為-7.

解法一:

   (Ⅰ)在直四棱柱ABCD―A1B1C1D1中,

∵A1A⊥底面ABCD,

∴AC是A1C在平面ABCD上的射影,

∵BD⊥AC, ∴BD⊥A1C.

   (Ⅱ)連結(jié)A1E,C1E,A1C1.

與(Ⅰ)同理可證BD⊥A1E,BD⊥C1E,

∴∠A1EC1二面角A1―BD―C1的平面角.

∵AD⊥DC, ∴∠A1D1C1=∠ADC=90°,

又A1D1=AD=2,D1C1=DC=2, AA1=,且AC⊥BD,

∴A1C1=4,AE=1,EC=3,  ∴A1E=2,C1E=2,

在△A1EC1中,A1C12=A1E2+C1E2,  ∴∠A1EC1=90°,

即二面角A1―BD―C1的大小為90°.

   (Ⅲ)過B作BF//AD交AC于F,連結(jié)FC1

    則∠C1BF就是AD與BC1所成的角.

∵AB=AD=2,BD⊥AC,AE=1,  ∴BF=2,EF=1,F(xiàn)C=2,BC=DC,

∴FC1=.  在△BFC1中,

即異面直線AD與BC1所成角的大小為.

解法二:

(Ⅰ)同解法一.

(Ⅱ)如圖,以D為坐標(biāo)原點(diǎn),DA,DC,DD1所在直線分別為x軸,y軸,z軸,建立空間直角坐標(biāo)系.

與(Ⅰ)同理可證,BD⊥A1E,BD⊥C1E,

∴∠A1EC1為二面角A1―BD―C1的平面角.

(Ⅲ)如圖,由D(0,0,0),A(2,0,0),C1(0,,,),B(3,,0)

∴異面直線AD與BC1所成角的大小為arccos.

解法三:

(II)如圖,建立空間直角坐標(biāo)系,坐標(biāo)原點(diǎn)為E.

     連結(jié)A1E,C1E,A1C1.

     與(I)同理可證,BD⊥A1E,BD⊥C1E,

     ∴∠A1EC1為二面角A1―BD―C1的平面角.

     由E(0,0,0),A1(0,-1,

     

.

    (Ⅲ)如圖,由A(0,-1,0),D(,0,0),B(,0,0),C1(0,3,).

得.

∴異面直線AD與BC1所成角的大小為arccos.

17.(共13分)

解:(Ⅰ)

ξ的概率分布如下表:

ξ

0

1

2

3

P

Eξ=0?+1?+2?+3?=1.5   (或Eξ=3?)

   (Ⅱ)乙至多擊中目標(biāo)2次的概率為

   (Ⅲ)設(shè)甲恰比乙多擊中目標(biāo)2次為事件A,甲恰擊中目標(biāo)2次且乙恰擊中目標(biāo)0次為事件B1,甲恰擊中目標(biāo)3次且乙恰擊中目標(biāo)1次為事件B2,則A=B1+B2,B1、B2為互斥事件.

    P(A)=P(B1)+P(B2)=

    所以,甲恰好比乙多擊中目標(biāo)2次的概率為

18.(共14分)

       解:(I)

      

       (II)直線由題意得

      

   (III)當(dāng)直線lx軸垂直時(shí),可設(shè)直線l的方程為. 由于直線l,曲線C關(guān)于x軸對(duì)稱,且l1l2關(guān)于x軸對(duì)稱,于是M1M2,M3M4的中點(diǎn)坐標(biāo)都為(a,0),所以△OM1M2,△OM3M4的重心坐標(biāo)都為,即它們的重心重合.

       當(dāng)直線lx軸不垂直時(shí),設(shè)直線l的方程為

       由

       由直線l與曲線C有兩個(gè)不同交點(diǎn),可知

      

      

       于是△OM1M2的重心與△OM3M4的重心也重合.

19.(共12分)

解:(Ⅰ)

(Ⅱ)因?yàn)?/p>

所以

猜想:是公比為的等比數(shù)列.

證明如下: 因?yàn)?/p>

所以是首項(xiàng)為的等比數(shù)列.

(Ⅲ)

20.(共14分)

   (Ⅰ)證明:設(shè)的峰點(diǎn),則由單峰函數(shù)定義可知,上單調(diào)遞增,

在上單調(diào)遞減.

當(dāng),

這與是含峰區(qū)間.

當(dāng)

這與是含峰區(qū)間.

(II)證明:由(I)的結(jié)論可知:

   當(dāng)f(x1)≥f(x2)時(shí),含峰區(qū)間的長(zhǎng)度為l1=x2

   當(dāng)f(x1)≤f(x2)時(shí),含峰區(qū)間的長(zhǎng)度為l2=1-x1;

   對(duì)于上述兩種情況,由題意得

    ①   由①得1+x2x1≤1+2r,即x2x1≤2r.

又因?yàn)?i>x2x1≥2r,所以x2x1=2r,所以    x2x1=2r.  ②

將②代入①得     x1≤0.5-r, x2≥0.5+r.   ③

由①和③解得x1=0.5-r, x2=0.5+r.       

所以這時(shí)含峰區(qū)間的長(zhǎng)度l1=l2=0.5+r,即存在x1 , x2使得所確定的含峰區(qū)間的長(zhǎng)度不大于0.5+r.

(Ⅲ)解:對(duì)先選擇的x1, x2, x1 <x2, 由(II)可知    x1+x2=1,   ④

在第一次確定的含峰區(qū)間為(0,x2)的情況下,x3的取值應(yīng)滿足   x3+x1=x2 , ⑤

由④與⑤可得    當(dāng)x1>x3時(shí),含峰區(qū)間的長(zhǎng)度為x1.

由條件x1x3≥0.02, 得x1-(1-2x1) ≥0.02, 從而x1≥0.34.

因此,為了將含峰區(qū)間的長(zhǎng)度縮短到0.34,只要取

x1=0.34, x2=0.66, x3=0.32.

 

 


同步練習(xí)冊(cè)答案