解:(1)依題意------2分 查看更多

 

題目列表(包括答案和解析)

解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟

通過研究學(xué)生的學(xué)習(xí)行為,心理學(xué)家發(fā)現(xiàn),學(xué)生的接受能力依賴于老師引入概念和描述問題所用的時(shí)間.講座開始時(shí),學(xué)生興趣激增;中間有一段不太長(zhǎng)的時(shí)間,學(xué)生的興趣保持較理想的狀態(tài),隨后學(xué)生的注意力開始分散.分析結(jié)果和實(shí)驗(yàn)表明,用f(x)表示學(xué)生掌握和接受概念的能力,x表示提出概念和講授概念的時(shí)間(單位:分),可有以下的關(guān)系式:

(1)

開講后多少分鐘,學(xué)生的接受能力最強(qiáng)?能維持多少時(shí)間?

(2)

開講后5分鐘與開講后20分鐘比較,學(xué)生接受能力何時(shí)強(qiáng)一些?

(3)

一個(gè)數(shù)學(xué)難題,需要55的接受能力以及13分鐘時(shí)間,老師能否及時(shí)在學(xué)生一直達(dá)到所需接受能力的狀態(tài)下講授完這個(gè)難題?

查看答案和解析>>

本題共有(1)、(2)、(3)三個(gè)選答題,每題7分,請(qǐng)考生任選2題作答,滿分14分.如果多做,則以所做的前2題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中.
(1)選修4-2:矩陣與變換
變換T1是逆時(shí)針旋轉(zhuǎn)90°的旋轉(zhuǎn)變換,對(duì)應(yīng)的變換矩陣為M1,變換T2對(duì)應(yīng)的變換矩陣是M2=
11
01
;
(I)求點(diǎn)P(2,1)在T1作用下的點(diǎn)Q的坐標(biāo);
(II)求函數(shù)y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
(2)選修4-4:極坐標(biāo)系與參數(shù)方程
從極點(diǎn)O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點(diǎn)P,使得OM•OP=12.
(Ⅰ)求動(dòng)點(diǎn)P的極坐標(biāo)方程;
(Ⅱ)設(shè)R為l上的任意一點(diǎn),試求RP的最小值.
(3)選修4-5:不等式選講
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集為{x|x≥
1
2
或x≤-
5
6
}
,求實(shí)數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

本題共有(1)、(2)、(3)三個(gè)選答題,每題7分,請(qǐng)考生任選2題作答,滿分14分.如果多做,則以所做的前2題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中.
(1)選修4-2:矩陣與變換
變換T1是逆時(shí)針旋轉(zhuǎn)90°的旋轉(zhuǎn)變換,對(duì)應(yīng)的變換矩陣為M1,變換T2對(duì)應(yīng)的變換矩陣是
(I)求點(diǎn)P(2,1)在T1作用下的點(diǎn)Q的坐標(biāo);
(II)求函數(shù)y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
(2)選修4-4:極坐標(biāo)系與參數(shù)方程
從極點(diǎn)O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點(diǎn)P,使得OM•OP=12.
(Ⅰ)求動(dòng)點(diǎn)P的極坐標(biāo)方程;
(Ⅱ)設(shè)R為l上的任意一點(diǎn),試求RP的最小值.
(3)選修4-5:不等式選講
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集為,求實(shí)數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

本題共有(1)、(2)、(3)三個(gè)選答題,每題7分,請(qǐng)考生任選2題作答,滿分14分.如果多做,則以所做的前2題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中.
(1)選修4-2:矩陣與變換
變換T1是逆時(shí)針旋轉(zhuǎn)90°的旋轉(zhuǎn)變換,對(duì)應(yīng)的變換矩陣為M1,變換T2對(duì)應(yīng)的變換矩陣是M2=
11
01
;
(I)求點(diǎn)P(2,1)在T1作用下的點(diǎn)Q的坐標(biāo);
(II)求函數(shù)y=x2的圖象依次在T1,T2變換的作用下所得的曲線方程.
(2)選修4-4:極坐標(biāo)系與參數(shù)方程
從極點(diǎn)O作一直線與直線l:ρcosθ=4相交于M,在OM上取一點(diǎn)P,使得OM•OP=12.
(Ⅰ)求動(dòng)點(diǎn)P的極坐標(biāo)方程;
(Ⅱ)設(shè)R為l上的任意一點(diǎn),試求RP的最小值.
(3)選修4-5:不等式選講
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集為{x|x≥
1
2
或x≤-
5
6
}
,求實(shí)數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x-1)>b對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

(本小題滿分16分)通過研究學(xué)生的學(xué)習(xí)行為,心理學(xué)家發(fā)現(xiàn),學(xué)生的接受能力依賴于老師引入概念和描述問題所用的時(shí)間:講授開始時(shí),學(xué)生的興趣激增;中間有一段不太長(zhǎng)的時(shí)間,學(xué)生的興趣保持較理想的狀態(tài);隨后學(xué)生的注意力開始分散.分析結(jié)果和實(shí)驗(yàn)表明,用f(x)表示學(xué)生掌握和接受概念的能力(f(x)的值越大,表示接受的能力越強(qiáng)),x表示提出和講授概念的時(shí)間(單位:min),可有以下的公式:

   (1)講課開始后多少分鐘,學(xué)生的注意力最集中?能持續(xù)多少分鐘?

   (2)講課開始后5分鐘與講課開始后25分鐘比較,何時(shí)學(xué)生的注意力更集中?

   (3)一道數(shù)學(xué)難題,需要講解24分鐘,并且要求學(xué)生的注意力至少達(dá)到180,那么經(jīng)過適當(dāng)安排,老師能否在學(xué)生達(dá)到所需的狀態(tài)下講授完這道題目?

查看答案和解析>>


同步練習(xí)冊(cè)答案