20.如圖.在長方體ABCD―A1B1C1D1.中.AD=AA1=1.AB=2.點E在棱AD上移動. (1)證明:D1E⊥A1D, (2)當(dāng)E為AB的中點時.求點E到面ACD1的距離, (3)AE等于何值時.二面角D1―EC―D的大小為. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

如圖,在長方體中,的中點,的中點。

   (1)證明:

   (2)求與平面所成角的正弦值。

                                             

查看答案和解析>>

(本小題滿分12分)

如圖,在長方體中,,的中點,的中點。

   (1)證明:;

   (2)證明:平面;

                                     

查看答案和解析>>

   . (本小題滿分12分)

  如圖,在長方體中,P在上,且.

  1)求證:

  2)求二面角的大;

  3)求點B到平面的距離.

查看答案和解析>>

(本小題滿分12分)

如圖,在長方體中,,的中點,的中點。

   (1)證明:;

   (2)求與平面所成角的正弦值。

                                             

查看答案和解析>>

(本小題滿分12分)

如圖,在長方體中,、分別是棱,上的點,,求異面直線所成角的余弦值;證明平面

求二面角的正弦值。

查看答案和解析>>

一、選擇題

1.D  2.A  3.A  4.B  5.B  6.C  7.C  8.C  9.C  10.B  11.D  12.A

二、填空題

13.         14.      15.       16.③④

三、解答題

17.解:(1)將得

(2)不等式即為

①當(dāng)

②當(dāng)

③.

18.解:

       

19.解:(1)設(shè)正面出現(xiàn)的次數(shù)為m,反面出現(xiàn)的次數(shù)為n,則,可得:

(2)

20.解法(一)

(1)證明:∵AE⊥平面AA1DD1,A1D⊥AD1,∴A1D⊥D1E

(2)設(shè)點E到面ACD1的距離為h,在△ACD1中,AC=CD1=,AD1=,

(3)過D作DH⊥CE于H,連D1H、DE,則D1H⊥CE,

  ∴∠DHD1為二面角D1―EC―D的平面角.

設(shè)AE=x,則BE=2-x

解法(二):以D為坐標(biāo)原點,直線DA,DC,DD1分別為x,y,z軸,建立空間直角坐標(biāo)系,設(shè)AE=x,則A1(1,0,1),D1(0,0,1),E(1,x,0),A(1,0,0)C(0,2,0)

(1)

(2)因為E為AB的中點,則E(1,1,0),從而,

,設(shè)平面ACD1的法向量為,則

也即,得,從而,所以點E到平面AD1C的距離為

(3)設(shè)平面D1EC的法向量,∴

由  令b=1, ∴c=2,a=2-x,

依題意

∴(不合,舍去), .

∴AE=時,二面角D1―EC―D的大小為.

21.解:(1)方法一 用數(shù)學(xué)歸納法證明:

1°當(dāng)n=1時,

   ∴,命題正確.

2°假設(shè)n=k時有

   則

  

∴時命題正確.

由1°、2°知,對一切n∈N時有

方法二:用數(shù)學(xué)歸納法證明:

       1°當(dāng)n=1時,∴;

    2°假設(shè)n=k時有成立,

       令,在[0,2]上單調(diào)遞增,所以由假設(shè)

有:即

也即當(dāng)n=k+1時  成立,所以對一切

   (2)下面來求數(shù)列的通項:所以

,

又bn=-1,所以

22.解:(1)設(shè)切點A、B坐標(biāo)分別為,

∴切線AP的方程為:

  切線BP的方程為:

解得P點的坐標(biāo)為:

所以△APB的重心G的坐標(biāo)為 ,

所以,由點P在直線l上運(yùn)動,從而得到重心G的軌跡方程為:

   (2)方法1:因為

由于P點在拋物線外,則

同理有

∴∠AFP=∠PFB.

方法2:①當(dāng)所以P點坐標(biāo)為,則P點到直線AF的距離為:

所以P點到直線BF的距離為:

所以d1=d2,即得∠AFP=∠PFB.

②當(dāng)時,直線AF的方程:

直線BF的方程:

所以P點到直線AF的距離為:

,同理可得到P點到直線BF的距離,因此由d1=d2,可得到∠AFP=∠PFB.

 

 

 

 

 

 


同步練習(xí)冊答案