證明:由題意可知. 查看更多

 

題目列表(包括答案和解析)

(1)利用函數(shù)單調(diào)性的定義證明函數(shù)h(x)=x+
3
x
在[
3
,∞)
上是增函數(shù);
(2)我們可將問題(1)的情況推廣到以下一般性的正確結(jié)論:已知函數(shù)y=x+
t
x
有如下性質(zhì):如果常數(shù)t>0,那么該函數(shù)在(0,
t
]
上是減函數(shù),在[
t
,+∞)
上是增函數(shù).
若已知函數(shù)f(x)=
4x2-12x-3
2x+1
,x∈[0,1],利用上述性質(zhì)求出函數(shù)f(x)的單調(diào)區(qū)間;又已知函數(shù)g(x)=-x-2a,問是否存在這樣的實(shí)數(shù)a,使得對于任意的x1∈[0,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,若不存在,請說明理由;如存在,請求出這樣的實(shí)數(shù)a的值.

查看答案和解析>>

如圖,D,E分別是△ABC邊AB,AC的中點(diǎn),直線DE交△ABC的外接圓與F,G兩點(diǎn),若CF∥AB,證明:

(Ⅰ) CD=BC;

(Ⅱ)△BCD∽△GBD.

【命題意圖】本題主要考查線線平行判定、三角形相似的判定等基礎(chǔ)知識,是簡單題.

【解析】(Ⅰ) ∵D,E分別為AB,AC的中點(diǎn),∴DE∥BC,

∵CF∥AB,   ∴BCFD是平行四邊形,

∴CF=BD=AD,   連結(jié)AF,∴ADCF是平行四邊形,

∴CD=AF,

∵CF∥AB, ∴BC=AF, ∴CD=BC;

(Ⅱ) ∵FG∥BC,∴GB=CF,

由(Ⅰ)可知BD=CF,∴GB=BD,

∵∠DGB=∠EFC=∠DBC, ∴△BCD∽△GBD

 

查看答案和解析>>

(本小題滿分14分)
在數(shù)列中,已知,其中
(I)若,求數(shù)列的前n項(xiàng)和;
(II)證明:當(dāng)時,數(shù)列中的任意三項(xiàng)都不能構(gòu)成等比數(shù)列;
(III)設(shè)集合,試問在區(qū)間[1,a]上是否存在實(shí)數(shù)b使得,若存在,求出b的一切可能的取值及相應(yīng)的集合C;若不存在,說明理由。

查看答案和解析>>

(本小題滿分14分)

        在數(shù)列中,已知,其中。

   (I)若,求數(shù)列的前n項(xiàng)和;

   (II)證明:當(dāng)時,數(shù)列中的任意三項(xiàng)都不能構(gòu)成等比數(shù)列;

   (III)設(shè)集合,試問在區(qū)間[1,a]上是否存在實(shí)數(shù)b使得,若存在,求出b的一切可能的取值及相應(yīng)的集合C;若不存在,說明理由。

 

查看答案和解析>>

(本小題滿分14分)
在數(shù)列中,已知,其中。
(I)若,求數(shù)列的前n項(xiàng)和;
(II)證明:當(dāng)時,數(shù)列中的任意三項(xiàng)都不能構(gòu)成等比數(shù)列;
(III)設(shè)集合,試問在區(qū)間[1,a]上是否存在實(shí)數(shù)b使得,若存在,求出b的一切可能的取值及相應(yīng)的集合C;若不存在,說明理由。

查看答案和解析>>


同步練習(xí)冊答案