解析:解本題主要是應(yīng)用拋物線的幾何特性(張口方向.對稱軸.截距.與 軸交點(diǎn)個數(shù))及函數(shù)零點(diǎn)的有關(guān)知識.即 查看更多

 

題目列表(包括答案和解析)

已知冪函數(shù)滿足。

(1)求實(shí)數(shù)k的值,并寫出相應(yīng)的函數(shù)的解析式;

(2)對于(1)中的函數(shù),試判斷是否存在正數(shù)m,使函數(shù),在區(qū)間上的最大值為5。若存在,求出m的值;若不存在,請說明理由。

【解析】本試題主要考查了函數(shù)的解析式的求解和函數(shù)的最值的運(yùn)用。第一問中利用,冪函數(shù)滿足,得到

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921574878204718/SYS201206192159381726566489_ST.files/image007.png">,所以k=0,或k=1,故解析式為

(2)由(1)知,,,因此拋物線開口向下,對稱軸方程為:,結(jié)合二次函數(shù)的對稱軸,和開口求解最大值為5.,得到

(1)對于冪函數(shù)滿足,

因此,解得,………………3分

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921574878204718/SYS201206192159381726566489_ST.files/image007.png">,所以k=0,或k=1,當(dāng)k=0時,,

當(dāng)k=1時,,綜上所述,k的值為0或1,。………………6分

(2)函數(shù),………………7分

由此要求,因此拋物線開口向下,對稱軸方程為:,

當(dāng)時,,因?yàn)樵趨^(qū)間上的最大值為5,

所以,或…………………………………………10分

解得滿足題意

 

查看答案和解析>>


同步練習(xí)冊答案