上述各式相加.得: 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)
通過計算可得下列等式:
,,┅┅,
將以上各式分別相加得:
即:
類比上述求法:請你求出的值(要求必須有運算推理過程).

查看答案和解析>>

(本小題滿分12分)

通過計算可得下列等式:

, ,┅┅,

將以上各式分別相加得:

即:

類比上述求法:請你求出的值(要求必須有運算推理過程).

 

 

查看答案和解析>>

(本小題滿分12分)
通過計算可得下列等式:
,,,┅┅,
將以上各式分別相加得:
即:
類比上述求法:請你求出的值(要求必須有運算推理過程).

查看答案和解析>>

通過計算可得下列等式:22-12=2×1+1,32-22=2×2+1,42-32=2×3+1,┅┅,(n+1)2-n2=2×n+1
將以上各式分別相加得:(n+1)2-12=2×(1+2+3+…+n)+n,即:1+2+3+…+n=
n(n+1)2

類比上述求法:請你求出12+22+32+…+n2的值(要求必須有運算推理過程).

查看答案和解析>>

通過計算可得下列等式:22-12=2×1+1,32-22=2×2+1,42-32=2×3+1,┅┅,(n+1)2-n2=2×n+1
將以上各式分別相加得:(n+1)2-12=2×(1+2+3+…+n)+n,即:數(shù)學公式
類比上述求法:請你求出12+22+32+…+n2的值(要求必須有運算推理過程).

查看答案和解析>>


同步練習冊答案