原不等式即. 查看更多

 

題目列表(包括答案和解析)

已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的橢圓C;其長(zhǎng)軸長(zhǎng)等于4,離心率為

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)若點(diǎn)(0,1), 問(wèn)是否存在直線與橢圓交于兩點(diǎn),且?若存在,求出的取值范圍,若不存在,請(qǐng)說(shuō)明理由.

【解析】本試題主要考查了橢圓的方程的求解,直線與橢圓的位置關(guān)系的運(yùn)用。

第一問(wèn)中,可設(shè)橢圓的標(biāo)準(zhǔn)方程為 

則由長(zhǎng)軸長(zhǎng)等于4,即2a=4,所以a=2.又,所以,

又由于 

所求橢圓C的標(biāo)準(zhǔn)方程為

第二問(wèn)中,

假設(shè)存在這樣的直線,設(shè),MN的中點(diǎn)為

 因?yàn)閨ME|=|NE|所以MNEF所以

(i)其中若時(shí),則K=0,顯然直線符合題意;

(ii)下面僅考慮情形:

,得,

,得

代入1,2式中得到范圍。

(Ⅰ) 可設(shè)橢圓的標(biāo)準(zhǔn)方程為 

則由長(zhǎng)軸長(zhǎng)等于4,即2a=4,所以a=2.又,所以,

又由于 

所求橢圓C的標(biāo)準(zhǔn)方程為

 (Ⅱ) 假設(shè)存在這樣的直線,設(shè),MN的中點(diǎn)為

 因?yàn)閨ME|=|NE|所以MNEF所以

(i)其中若時(shí),則K=0,顯然直線符合題意;

(ii)下面僅考慮情形:

,得,

,得……②  ……………………9分

代入①式得,解得………………………………………12分

代入②式得,得

綜上(i)(ii)可知,存在這樣的直線,其斜率k的取值范圍是

 

查看答案和解析>>

解關(guān)于的不等式:

【解析】解:當(dāng)時(shí),原不等式可變?yōu)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917361445396888/SYS201206191737418133756853_ST.files/image004.png">,即            (2分)

 當(dāng)時(shí),原不等式可變?yōu)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917361445396888/SYS201206191737418133756853_ST.files/image007.png">         (5分)  若時(shí),的解為            (7分)

 若時(shí),的解為         (9分) 若時(shí),無(wú)解(10分) 若時(shí),的解為  (12分綜上所述

當(dāng)時(shí),原不等式的解為

當(dāng)時(shí),原不等式的解為

當(dāng)時(shí),原不等式的解為

當(dāng)時(shí),原不等式的解為

當(dāng)時(shí),原不等式的解為:

 

查看答案和解析>>

要證,只需證,即需,即需證,即證35>11,因?yàn)?5>11顯然成立,所以原不等式成立。以上證明運(yùn)用了

A.比較法           B.綜合法           C.分析法           D.反證法

 

查看答案和解析>>

要證,只需證,即需,即需證,即證35>11,因?yàn)?5>11顯然成立,所以原不等式成立。以上證明運(yùn)用了

A.比較法 B.綜合法 C.分析法 D.反證法

查看答案和解析>>

要證,只需證,即需,即需證,即證35>11,因?yàn)?5>11顯然成立,所以原不等式成立。以上證明運(yùn)用了
A.比較法B.綜合法C.分析法D.反證法

查看答案和解析>>


同步練習(xí)冊(cè)答案