題目列表(包括答案和解析)
如圖,在三棱柱中,側(cè)面,為棱上異于的一點,,已知,求:
(Ⅰ)異面直線與的距離;
(Ⅱ)二面角的平面角的正切值.
【解析】第一問中,利用建立空間直角坐標系
解:(I)以B為原點,、分別為Y,Z軸建立空間直角坐標系.由于,
在三棱柱中有
,
設(shè)
又側(cè)面,故. 因此是異面直線的公垂線,則,故異面直線的距離為1.
(II)由已知有故二面角的平面角的大小為向量與的夾角.
(c×2-bx+a) |
x2 |
1 |
x |
b |
x |
1 |
x |
1 |
x |
1 |
2 |
1 |
2 |
b |
(x+a) |
(x+c) |
(x+d) |
bx |
(ax-1) |
(cx-1) |
(dx-1) |
1 |
2 |
1 |
4 |
1 |
3 |
1 |
2 |
1 |
4 |
1 |
3 |
如圖,三棱錐中,側(cè)面底面, ,且,.(Ⅰ)求證:平面;
(Ⅱ)若為側(cè)棱PB的中點,求直線AE與底面所成角的正弦值.
【解析】第一問中,利用由知, ,
又AP=PC=2,所以AC=2,
又AB=4, BC=2,,所以,所以,即,
又平面平面ABC,平面平面ABC=AC, 平面ABC,
平面ACP,所以第二問中結(jié)合取AC中點O,連接PO、OB,并取OB中點H,連接AH、EH,因為PA=PC,所以PO⊥AC,同(Ⅰ)易證平面ABC,又EH//PO,所以EH平面ABC ,
則為直線AE與底面ABC 所成角,
解
(Ⅰ) 證明:由用由知, ,
又AP=PC=2,所以AC=2,
又AB=4, BC=2,,所以,所以,即,
又平面平面ABC,平面平面ABC=AC, 平面ABC,
平面ACP,所以
………………………………………………6分
(Ⅱ)如圖, 取AC中點O,連接PO、OB,并取OB中點H,連接AH、EH,
因為PA=PC,所以PO⊥AC,同(Ⅰ)易證平面ABC,
又EH//PO,所以EH平面ABC ,
則為直線AE與底面ABC 所成角,
且………………………………………10分
又PO=1/2AC=,也所以有EH=1/2PO=,
由(Ⅰ)已證平面PBC,所以,即,
故,
于是
所以直線AE與底面ABC 所成角的正弦值為
解:因為有負根,所以在y軸左側(cè)有交點,因此
解:因為函數(shù)沒有零點,所以方程無根,則函數(shù)y=x+|x-c|與y=2沒有交點,由圖可知c>2
13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0
若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數(shù)y=f(x)-1的零點
(2)因為f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數(shù)是奇函數(shù)
數(shù)字1,2,3,4恰好排成一排,如果數(shù)字i(i=1,2,3,4)恰好出現(xiàn)在第i個位置上則稱有一個巧合,求巧合數(shù)的分布列。
設(shè)函數(shù),其中為自然對數(shù)的底數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)記曲線在點(其中)處的切線為,與軸、軸所圍成的三角形面積為,求的最大值.
【解析】第一問利用由已知,所以,
由,得, 所以,在區(qū)間上,,函數(shù)在區(qū)間上單調(diào)遞減; 在區(qū)間上,,函數(shù)在區(qū)間上單調(diào)遞增;
第二問中,因為,所以曲線在點處切線為:.
切線與軸的交點為,與軸的交點為,
因為,所以,
, 在區(qū)間上,函數(shù)單調(diào)遞增,在區(qū)間上,函數(shù)單調(diào)遞減.所以,當時,有最大值,此時,
解:(Ⅰ)由已知,所以, 由,得, 所以,在區(qū)間上,,函數(shù)在區(qū)間上單調(diào)遞減;
在區(qū)間上,,函數(shù)在區(qū)間上單調(diào)遞增;
即函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.
(Ⅱ)因為,所以曲線在點處切線為:.
切線與軸的交點為,與軸的交點為,
因為,所以,
, 在區(qū)間上,函數(shù)單調(diào)遞增,在區(qū)間上,函數(shù)單調(diào)遞減.所以,當時,有最大值,此時,
所以,的最大值為
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com