(8) 設(shè)雙曲線的焦點在軸上.兩條漸近線為.則雙曲線的離心率 查看更多

 

題目列表(包括答案和解析)

設(shè)雙曲線的焦點在軸上,兩條漸近線為,則雙曲線的離心率為(       )

A.     B.      C.       D.

查看答案和解析>>

設(shè)雙曲線的焦點在軸上,兩條漸近線為,則該雙曲線的離心率(    )

A.              B.          C.           D.

查看答案和解析>>

設(shè)雙曲線的焦點在軸上,兩條漸近線為,則該雙曲線的離心率(    )

A.              B.          C.           D.

 

查看答案和解析>>

設(shè)雙曲線的焦點在軸上,兩條漸近線為,則雙曲線的離心率為(      )
A.B.C.D.

查看答案和解析>>

設(shè)雙曲線的焦點在軸上,兩條漸近線為,則該雙曲線的離心率   

A.       B.        C.        D.

查看答案和解析>>

一 選擇題

(1)B     (2)C     (3)B     (4)B     (5)D    (6)A

(7)A     (8)C     (9)D     (10)C    (11)B   (12)C

二 填空題

(13)     (14)     (15)   (16)1

三、解答題

(17)本小題主要考查指數(shù)和對數(shù)的性質(zhì)以及解方程的有關(guān)知識. 滿分12分.

解:

   

    (無解). 所以

(18)本小題主要考查同角三角函數(shù)的基本關(guān)系式、二倍角公式等基礎(chǔ)知識以及三角恒等變形的能力. 滿分12分.

解:原式

因為 

所以   原式.

因為為銳角,由.

所以  原式

因為為銳角,由

所以   原式

(19)本小題主要考查等差數(shù)列的通項公式,前n項和公式等基礎(chǔ)知識,根據(jù)已知條件列方程以及運算能力.滿分12分.

解:設(shè)等差數(shù)列的公差為d,由及已知條件得

, ①

     ②

由②得,代入①有

解得    當舍去.

因此 

故數(shù)列的通項公式

(20)本小題主要考查把實際問題抽象為數(shù)學問題,應(yīng)用不等式等基礎(chǔ)知識和方法解決問題的能力. 滿分12分.

解:設(shè)矩形溫室的左側(cè)邊長為a m,后側(cè)邊長為b m,則

        蔬菜的種植面積

       

         

        所以

        當

        答:當矩形溫室的左側(cè)邊長為40m,后側(cè)邊長為20m時,蔬菜的種植面積最大,最大種植面積為648m2.

(21)本小題主要考查兩個平面垂直的性質(zhì)、二面角等有關(guān)知識,以有邏輯思維能力和空間想象能力. 滿分12分.

E

     因為PA=PC,所以PD⊥AC,

 又已知面PAC⊥面ABC,

    <pre id="jbpdm"></pre>
    <dl id="jbpdm"><track id="jbpdm"><em id="jbpdm"></em></track></dl>
    <dl id="jbpdm"></dl>

      D

       因為PA=PB=PC,

       所以DA=DB=DC,可知AC為△ABC外接圓直徑,

       因此AB⊥BC.

      (2)解:因為AB=BC,D為AC中點,所以BD⊥AC.

            又面PAC⊥面ABC,

            所以BD⊥平面PAC,D為垂足.

            作BE⊥PC于E,連結(jié)DE,

            因為DE為BE在平面PAC內(nèi)的射影,

            所以DE⊥PC,∠BED為所求二面角的平面角.

            在Rt△ABC中,AB=BC=,所以BD=.

            在Rt△PDC中,PC=3,DC=,PD=

            所以

            因此,在Rt△BDE中,,

           

            所以側(cè)面PBC與側(cè)面PAC所成的二面角為60°.

      (22)本小題主要考查直線和橢圓的基本知識,以及綜合分析和解題能力. 滿分14分.

      解:(1)由題設(shè)有

      設(shè)點P的坐標為(),由,得,

      化簡得       ①

      將①與聯(lián)立,解得 

      所以m的取值范圍是.

      (2)準線L的方程為設(shè)點Q的坐標為,則

         ②

      代入②,化簡得

      由題設(shè),得 ,無解.

      代入②,化簡得

      由題設(shè),得

      解得m=2.

      從而得到PF2的方程


      同步練習冊答案