∴的取值范圍是(2.+).方法二: 查看更多

 

題目列表(包括答案和解析)

已知函數(shù),.

(Ⅰ)若函數(shù)依次在處取到極值.求的取值范圍;

(Ⅱ)若存在實(shí)數(shù),使對(duì)任意的,不等式 恒成立.求正整數(shù)的最大值.

【解析】第一問中利用導(dǎo)數(shù)在在處取到極值點(diǎn)可知導(dǎo)數(shù)為零可以解得方程有三個(gè)不同的實(shí)數(shù)根來分析求解。

第二問中,利用存在實(shí)數(shù),使對(duì)任意的,不等式 恒成立轉(zhuǎn)化為,恒成立,分離參數(shù)法求解得到范圍。

解:(1)

(2)不等式 ,即,即.

轉(zhuǎn)化為存在實(shí)數(shù),使對(duì)任意的,不等式恒成立.

即不等式上恒成立.

即不等式上恒成立.

設(shè),則.

設(shè),則,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911530204634527/SYS201207091153477963415106_ST.files/image016.png">,有.

在區(qū)間上是減函數(shù)。又

故存在,使得.

當(dāng)時(shí),有,當(dāng)時(shí),有.

從而在區(qū)間上遞增,在區(qū)間上遞減.

[來源:]

所以當(dāng)時(shí),恒有;當(dāng)時(shí),恒有;

故使命題成立的正整數(shù)m的最大值為5

 

查看答案和解析>>

已知函數(shù).(

(1)若在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.

【解析】第一問中,首先利用在區(qū)間上單調(diào)遞增,則在區(qū)間上恒成立,然后分離參數(shù)法得到,進(jìn)而得到范圍;第二問中,在區(qū)間上,函數(shù)的圖象恒在曲線下方等價(jià)于在區(qū)間上恒成立.然后求解得到。

解:(1)在區(qū)間上單調(diào)遞增,

在區(qū)間上恒成立.  …………3分

,而當(dāng)時(shí),,故. …………5分

所以.                 …………6分

(2)令,定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859562664899842_ST.files/image016.png">.

在區(qū)間上,函數(shù)的圖象恒在曲線下方等價(jià)于在區(qū)間上恒成立.   

        …………9分

① 若,令,得極值點(diǎn),

當(dāng),即時(shí),在(,+∞)上有,此時(shí)在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;

當(dāng),即時(shí),同理可知,在區(qū)間上遞增,

,也不合題意;                     …………11分

② 若,則有,此時(shí)在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);

要使在此區(qū)間上恒成立,只須滿足

由此求得的范圍是.        …………13分

綜合①②可知,當(dāng)時(shí),函數(shù)的圖象恒在直線下方.

 

查看答案和解析>>

如圖,是△的重心,、分別是邊上的動(dòng)點(diǎn),且、、三點(diǎn)共線.

(1)設(shè),將、、表示;

(2)設(shè),,證明:是定值;

(3)記△與△的面積分別為、.求的取值范圍.

(提示:

【解析】第一問中利用(1)

第二問中,由(1),得;①

另一方面,∵是△的重心,

不共線,∴由①、②,得

第三問中,

由點(diǎn)、的定義知,,

時(shí),時(shí),.此時(shí),均有

  時(shí),.此時(shí),均有

以下證明:,結(jié)合作差法得到。

解:(1)

(2)一方面,由(1),得;①

另一方面,∵是△的重心,

.  ②

、不共線,∴由①、②,得 

解之,得,∴(定值).

(3)

由點(diǎn)、的定義知,,

時(shí),;時(shí),.此時(shí),均有

  時(shí),.此時(shí),均有

以下證明:.(法一)由(2)知,

,∴

,∴

的取值范圍

 

查看答案和解析>>

(09年東城區(qū)二模理)(14分)

已知函數(shù)(其中為常數(shù),).利用函數(shù)構(gòu)造一個(gè)數(shù)列,方法如下:

對(duì)于給定的定義域中的,令,,…,,…

在上述構(gòu)造過程中,如果=1,2,3,…)在定義域中,那么構(gòu)造數(shù)列的過程繼續(xù)下去;如果不在定義域中,那么構(gòu)造數(shù)列的過程就停止.

 。á瘢┊(dāng)時(shí),求數(shù)列的通項(xiàng)公式;

    (Ⅱ)如果可以用上述方法構(gòu)造出一個(gè)常數(shù)列,求的取值范圍;

   (Ⅲ)是否存在實(shí)數(shù),使得取定義域中的任一實(shí)數(shù)值作為,都可用上述方法構(gòu)造出一個(gè)無窮數(shù)列  ?若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

某商場(chǎng)在促銷期間規(guī)定:商場(chǎng)內(nèi)所有商品按標(biāo)價(jià)的80%出售;同時(shí),當(dāng)顧客在該商場(chǎng)內(nèi)消費(fèi)滿一定金額后,按如下方案相應(yīng)獲得第二次優(yōu)惠:
消費(fèi)金額(元)的范圍 [200,400) [400,500) [500,700) [700,900)
第二次優(yōu)惠金額(元) 30 60 100 150
根據(jù)上述促銷方法,顧客在該商場(chǎng)購物可以獲得雙重優(yōu)惠.例如:購買標(biāo)價(jià)為600元的商品,則消費(fèi)金額為480元,480∈[400,500),所以獲得第二次優(yōu)惠金額為60元,獲得的優(yōu)惠總額為:600×0.2+60=180(元).
設(shè)購買商品的優(yōu)惠率=
購買商品獲得的優(yōu)惠總額
商品的標(biāo)價(jià)

試問:(1)購買一件標(biāo)價(jià)為1000元的商品,顧客得到的優(yōu)惠率是多少?
(2)設(shè)顧客購買標(biāo)價(jià)為x元(x∈[250,1000]) 的商品獲得的優(yōu)惠總額為y元,試建立y關(guān)于x的函數(shù)關(guān)系式;
(3)對(duì)于標(biāo)價(jià)在[625,800)(元)內(nèi)的商品,顧客購買商品的標(biāo)價(jià)的取值范圍為多少時(shí),可得到不小于
1
3
的優(yōu)惠率?(取值范圍用區(qū)間表示)

查看答案和解析>>


同步練習(xí)冊(cè)答案