題目列表(包括答案和解析)
(14分)設(shè)函數(shù)
(Ⅰ)求函數(shù)的最小正周期;
(Ⅱ)若,是否存在實(shí)數(shù)m,使函數(shù)的值域恰為?若存在,請(qǐng)求
出m的取值;若不存在,請(qǐng)說明理由.設(shè)函數(shù)
(Ⅰ)求函數(shù)的最小正周期;
(Ⅱ)求函數(shù)的增區(qū)間
(Ⅲ)當(dāng)時(shí),求函數(shù)的最大最小值并求出相應(yīng)的的值
函數(shù)的最小正周期為,
(Ⅰ)求的單調(diào)遞增區(qū)間;
(Ⅱ)在中,角A,B,C的對(duì)邊分別是,且滿足,
求角B的值,并求函數(shù)的取值范圍.
已知函數(shù).
(Ⅰ)求函數(shù)的最小正周期;w.w.w.k.s.5.u.c.o.m
(Ⅱ)當(dāng)時(shí),求函數(shù)的最大值和最小值.
已知函數(shù)
(Ⅰ)求函數(shù)的最小正周期;
(Ⅱ)求使函數(shù)取得最大值的x的集合.
一、選擇題:
1―5:ACCCB 6―10:CDACD 11―12:BC
二、填空題:
13.2 14. 15.5 16.① ②球的體積函數(shù)的導(dǎo)數(shù)等于球的表面積函數(shù)
三、解答題:
17.(本小題滿分12分)
解:(I)……………………2分
……………………4分
……………………………………………………………………5分
(II)、B均為銳角且B<A
又C為鈍角
∴最短邊為b……………………………………………………7分
由,解得………………………………9分
又…………………………12分
18.(本小題滿分12分)
解:(I)
………………………………3分
故…………………………………………………4分
(II)令.
若時(shí),當(dāng)時(shí),函數(shù)
…………………………………………………………6分
若時(shí),當(dāng)時(shí),函數(shù)
…………………………………………………………8分
(III)由
確定單調(diào)遞增的正值區(qū)間是;
由
確定單調(diào)遞減的正值區(qū)間是;………10分
綜上,當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為.
當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為.……12分
注:①
的這些
等價(jià)形式中,以最好用. 因?yàn)閺?fù)合函數(shù)
的中間變量是增函數(shù),對(duì)求的單調(diào)區(qū)間來說,
只看外層函數(shù)的單調(diào)性即可.否則,利用的其它形
式,例如求單調(diào)區(qū)間是非常容易出錯(cuò)的. 同學(xué)們可以嘗試做一
下的其它形式,認(rèn)真體會(huì),比較優(yōu)劣!
②今后遇到求類似的單調(diào)區(qū)間問題,應(yīng)首先通過誘導(dǎo)公式將轉(zhuǎn)化為標(biāo)準(zhǔn)形
式:(其中A>0,ω>0),然后再行求
解,保險(xiǎn)系數(shù)就大了.
19.(本小題滿分12分)
解:(I)由已知……………………1分
…………3分
由已知
∴公差d=1…………………………………………………………4分
……………………………………………………6分
(II)設(shè)…………………………7分
當(dāng)時(shí),是k的增函數(shù),也是k的增函數(shù).
………………………………10分
又
不存在,使…………………………………12分
20.(本小題滿分12分)
解:恒成立
只需小于的最小值…………………………………………2分
而當(dāng)時(shí),≥3……………………………………………4分
……………………………………………………6分
存在極大值與極小值
有兩個(gè)不等的實(shí)根…………………………8分
或…………………………………………………………10分
要使“P且Q”為真,只需
故m的取值范圍為[2,6].…………………………………………………12分
21.(本小題滿分12分)
解:設(shè)此工廠應(yīng)分別生產(chǎn)甲、乙兩種產(chǎn)品x噸、y噸,獲得利潤z萬元………1分
依題意可得約束條件:
|