(II) 求在[-3,1]上的最大值和最小值. 查看更多

 

題目列表(包括答案和解析)

(2010•湖北模擬)已知圓M的圓心M在x軸上,半徑為1,直線l:y=
4
3
x-
1
2
,被圓M所截的弦長為
3
,且圓心M在直線l的下方.
(I)求圓M的方程;
(II)設(shè)A(0,t),B(0,t+6)(-5≤t≤-2),若圓M是△ABC的內(nèi)切圓,求△ABC的面積S的最大值和最小值.

查看答案和解析>>

本題有(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
已知矩陣M=
7-6
4-3
,向量
ξ 
=
6
5

(I)求矩陣M的特征值λ1、λ2和特征向量
ξ
1
ξ2

(II)求M6
ξ
的值.
(2)選修4-4:坐標系與參數(shù)方程
在平面直角坐標系xOy中,已知曲線C的參數(shù)方程為
x=2cosα
y=sinα
(α為參數(shù))
.以直角坐標系原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為ρcos(θ-
π
4
)=2
2

(Ⅰ)求直線l的直角坐標方程;
(Ⅱ)點P為曲線C上的動點,求點P到直線l距離的最大值.
(3)選修4-5:不等式選講
(Ⅰ)已知:a、b、c∈R+,求證:a2+b2+c2
1
3
(a+b+c)2
;    
(Ⅱ)某長方體從一個頂點出發(fā)的三條棱長之和等于3,求其對角線長的最小值.

查看答案和解析>>

本題有(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
(1)(本小題滿分7分)選修4-2:矩陣與變換
已知矩陣,向量
(I)求矩陣的特征值、和特征向量;
(II)求的值.
(2)(本小題滿分7分)選修4-4:坐標系與參數(shù)方程
在平面直角坐標系xOy中,已知曲線C的參數(shù)方程為.以直角坐標系原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為
(Ⅰ)求直線l的直角坐標方程;
(Ⅱ)點P為曲線C上的動點,求點P到直線l距離的最大值.
(3)(本小題滿分7分)選修4-5:不等式選講
(Ⅰ)已知:a、b、;w.w.w.k.s.5.u.c.o.m   
(Ⅱ)某長方體從一個頂點出發(fā)的三條棱長之和等于3,求其對角線長的最小值.

查看答案和解析>>

本題有(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.

(1)(本小題滿分7分)選修4-2:矩陣與變換

已知矩陣,向量

    (I)求矩陣的特征值、和特征向量;

(II)求的值.

 

 

(2)(本小題滿分7分)選修4-4:坐標系與參數(shù)方程

在平面直角坐標系xOy中,已知曲線C的參數(shù)方程為.以直角坐標系原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為

(Ⅰ)求直線l的直角坐標方程;

(Ⅱ)點P為曲線C上的動點,求點P到直線l距離的最大值.

 

 

(3)(本小題滿分7分)選修4-5:不等式選講

(Ⅰ)已知:a、b、;www.7caiedu.cn   

(Ⅱ)某長方體從一個頂點出發(fā)的三條棱長之和等于3,求其對角線長的最小值.

 

 

 

查看答案和解析>>

本題有(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
(1)(本小題滿分7分)選修4-2:矩陣與變換
已知矩陣,向量
(I)求矩陣的特征值、和特征向量;
(II)求的值.
(2)(本小題滿分7分)選修4-4:坐標系與參數(shù)方程
在平面直角坐標系xOy中,已知曲線C的參數(shù)方程為.以直角坐標系原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為
(Ⅰ)求直線l的直角坐標方程;
(Ⅱ)點P為曲線C上的動點,求點P到直線l距離的最大值.
(3)(本小題滿分7分)選修4-5:不等式選講
(Ⅰ)已知:a、b、;   
(Ⅱ)某長方體從一個頂點出發(fā)的三條棱長之和等于3,求其對角線長的最小值.

查看答案和解析>>

一、選擇題(本大題共8小題,每小題5分,共40分)

1.D  2.C 3.B 4.B 5.D 6.D 7.A 8.C

二、填空題(本大題共6小題,每小題5分,共30分)

9.72    10.    11.1 ,       12.f(x)=,3

13.,          14.①②③④ , ①③②④

注:兩個空的填空題第一個空填對得2分,第二個空填對得3分.

三、解答題(本大題共6小題,共80分)

15.(本小題滿分13分)

解:設(shè)既會唱歌又會跳舞的有x人,則文娛隊中共有(7-x)人,那么只會一項的人數(shù)是

(7-2 x)人.

 (I)∵,

.……………………………………3分

∴x=2.           ……………………………………5分

故文娛隊共有5人.……………………………………7分

(II) 的概率分布列為

0

1

2

P

,……………………………………9分

,……………………………………11分

=1.   …………………………13分

16.(本小題滿分13分)

解:(I)由,得

.……………………………………2分

當x=1時,切線l的斜率為3,可得2a+b=0.       ①

時,有極值,則,可得4a+3b+4=0.②

由①、②解得    a=2,b=-4.……………………………………5分

設(shè)切線l的方程為 

由原點到切線l的距離為

.解得m=±1.

∵切線l不過第四象限,

∴m=1.……………………………………6分

由于l切點的橫坐標為x=1,∴

∴1+a+b+c=4.

∴c=5.…………………………………………………………………7分

(II)由(I)可得,

.……………………………………8分

,得x=-2,

x

[-3,-2)

-2

(-2, )

(,1]

+

0

-

0

+

f(x)

極大值

極小值

……………………………………11分

∴f(x)在x=-2處取得極大值f(-2)=13.

處取得極小值=

又f(-3)=8,f(1)=4.

∴f(x)在[-3,1]上的最大值為13,最小值為.……………………………………13分

 

 

17.(本小題滿分14分)

解法一:(I) ∵PC平面ABC,平面ABC,

∴PCAB.…………………………2分

∵CD平面PAB,平面PAB,

∴CDAB.…………………………4分

,

∴AB平面PCB.  …………………………5分

(II) 過點A作AF//BC,且AF=BC,連結(jié)PF,CF.

為異面直線PA與BC所成的角.………6分

由(Ⅰ)可得AB⊥BC,

∴CFAF.

由三垂線定理,得PFAF.

則AF=CF=,PF=,

中,  tan∠PAF==,

∴異面直線PA與BC所成的角為.…………………………………9分

(III)取AP的中點E,連結(jié)CE、DE.

∵PC=AC=2,∴CE PA,CE=

∵CD平面PAB,

由三垂線定理的逆定理,得  DE PA.

為二面角C-PA-B的平面角.…………………………………11分

由(I) AB平面PCB,又∵AB=BC,可求得BC=

  在中,PB=,

   

    在中, sin∠CED=

∴二面角C-PA-B的大小為arcsin.……14分

解法二:(I)同解法一.

(II) 由(I) AB平面PCB,∵PC=AC=2,

又∵AB=BC,可求得BC=

以B為原點,如圖建立坐標系.

則A(0,,0),B(0,0,0),

C(,0,0),P(,0,2).

,

…………………7分

    則+0+0=2.

    ==

   ∴異面直線AP與BC所成的角為.………………………10分

(III)設(shè)平面PAB的法向量為m= (x,y,z).

,

   即

解得   令= -1,  得 m= (,0,-1).

   設(shè)平面PAC的法向量為n=().

 則   即

解得   令=1,  得 n= (1,1,0).……………………………12分

    =

    ∴二面角C-PA-B的大小為arccos.………………………………14分

18.(本小題滿分13分)

解:(I)設(shè)P(x,y),因為A、B分別為直線上的點,故可設(shè)

   ,

   ∵,

   ∴………………………4分

   又,

   ∴.……………………………………5分

   ∴

  即曲線C的方程為.………………………………………6分

(II) 設(shè)N(s,t),M(x,y),則由,可得(x,y-16)= (s,t-16).

     故,.……………………………………8分

     ∵M、N在曲線C上,

     ∴……………………………………9分

     消去s得 

由題意知,且,

     解得   .………………………………………………………11分

又   , ∴

     解得  ).

   故實數(shù)的取值范圍是).………………………………13分

19.(本小題滿分13分)

解:(I)∵,

        ∴

        即

        又,可知對任何,

所以.……………………………2分

        ∵

      ∴是以為首項,公比為的等比數(shù)列.………4分

    (II)由(I)可知=  ().

        ∴

        .……………………………5分

         當n=7時,;

         當n<7時,,;

         當n>7時,,

∴當n=7或n=8時,取最大值,最大值為.……8分

  (III)由,得       (*)

        依題意(*)式對任意恒成立,

        ①當t=0時,(*)式顯然不成立,因此t=0不合題意.…………9分

    、诋攖<0時,由,可知).

      而當m是偶數(shù)時,因此t<0不合題意.…………10分

    、郛攖>0時,由),

 ∴.    ()……11分

      設(shè)     (

      ∵ =,

      ∴

      ∴的最大值為

      所以實數(shù)的取值范圍是.…………………………………13分

20.(本小題滿分14分)

解:(I) ∵x>0,∴

∴f(x)在(0,1)上為減函數(shù),在上是增函數(shù).

由0<a<b,且f(a)=f(b),

可得 0<a1<b和

∴2ab=a+b>.……………………………………3分

,即ab>1.……………………………………4分

 (II)不存在滿足條件的實數(shù)a,b.

     若存在滿足條件的實數(shù)a,b,使得函數(shù)y=的定義域、值域都是

[a,b],則a>0.

    

①   當時,在(0,1)上為減函數(shù).

     即 

解得  a=b.

故此時不存在適合條件的實數(shù)a,b.………………………………6分

②     當時,上是增函數(shù).

     即 

此時a,b是方程的根,此方程無實根.

故此時不存在適合條件的實數(shù)a,b.………………………………8分

③     當時,

由于,而

故此時不存在適合條件的實數(shù)a,b.

      綜上可知,不存在適合條件的實數(shù)a,b.………………………………10分

(III)若存在實數(shù)a,b(a<b),使得函數(shù)y=f(x)的定義域為[a,b]時,值域為[ma,mb].

      則a>0,m>0.

①       當時,由于f(x)在(0,1)上是減函數(shù),故.此時刻得a,b異號,不符合題意,所以a,b不存在.

②       當時,由(II)知0在值域內(nèi),值域不可能是[ma,mb],所以a,b不存在.

        故只有

上是增函數(shù),

     ∴        即 

a,  b是方程的兩個根.

即關(guān)于x的方程有兩個大于1的實根.……………………12分

設(shè)這兩個根為,

+=,?=

       即 

解得  

    故m的取值范圍是.…………………………………………14分

 

 

 

 

 

 

 


同步練習冊答案